Noor Azura Awang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/548661/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supercontinuum generation of gold coated side-polished fiber based-mode-locked pulse. Optik, 2022, 260, 169074.	2.9	2
2	Plasma sputtered platinum saturable absorber with variable sputtering time for Q-switched erbium-doped fiber laser. Optics and Laser Technology, 2021, 136, 106525.	4.6	8
3	Mode-locking soliton generation using platinum in figure-8 configuration. Optical Fiber Technology, 2019, 52, 101956.	2.7	2
4	Supercontinuum generation by 50 m high nonlinear fiber in double ring cavity. Optik, 2019, 193, 162995.	2.9	1
5	Q-switched in figure of 8 by using graphite flakes as saturable absorber. Journal of Physics: Conference Series, 2019, 1371, 012010.	0.4	Ο
6	Pulse compression in Q-switched fiber laser by using platinum as saturable absorber. Optik, 2019, 179, 977-985.	2.9	11
7	Experimental and Numerical Comparison Q-Switched Fiber Laser Generation using Graphene as Saturable Absorber. MATEC Web of Conferences, 2018, 150, 01009.	0.2	3
8	Narrow core standard single mode fiber for supercontinuum generation from graphene-based mode-locked pulses. Optik, 2018, 172, 347-352.	2.9	2
9	Multiwavelength fiber laser in four mode fiber. Optik, 2017, 142, 615-620.	2.9	4
10	S + C + L Band tunable wavelength conversion using FWM dualâ€wavelength fiber laser in a highly nonlinear fiber. Microwave and Optical Technology Letters, 2013, 55, 379-382.	1.4	1
11	Passively mode-locked erbium doped zirconia fiber laser using a nonlinear polarisation rotation technique. Optics and Laser Technology, 2013, 47, 22-25.	4.6	12
12	Temperature Sensing Using Frequency Beating Technique From Single-Longitudinal Mode Fiber Laser. IEEE Sensors Journal, 2012, 12, 2496-2500.	4.7	21
13	Generation of high power pulse of Biâ€EDF and octave spanning supercontinuum using highly nonlinear fiber. Microwave and Optical Technology Letters, 2012, 54, 983-987.	1.4	3
14	All fiber passively mode locked zirconium-based erbium-doped fiber laser. Optics and Laser Technology, 2012, 44, 534-537.	4.6	9
15	Supercontinuum generation using a passive mode-locked stretched-pulse bismuth-based erbium-doped fiber laser. Optics and Laser Technology, 2012, 44, 741-743.	4.6	2
16	Wide-band fanned-out supercontinuum source covering O-, E-, S-, C-, L- and U-bands. Optics and Laser Technology, 2012, 44, 2168-2174.	4.6	3
17	Supercontinuum from Zr-EDF using Zr-EDF mode-locked fiber laser. Laser Physics Letters, 2012, 9, 44-49.	1.4	15
18	Wavelength conversion based on FWM in a HNLF by using a tunable dual-wavelength erbium doped fibre laser source. Journal of Modern Optics, 2011, 58, 566-572.	1.3	5

Noor Azura Awang

#	Article	IF	CITATIONS
19	Wavelength conversion based on four-wave mixing in a highly nonlinear fiber in ring configuration. Laser Physics Letters, 2011, 8, 742-746.	1.4	5
20	Tunable microwave photonic frequencies generation based on stimulated Brillouin scattering operating in the Lâ€band region. Microwave and Optical Technology Letters, 2011, 53, 1710-1713.	1.4	1
21	Four-wave mixing in dual wavelength fiber laser utilizing SOA for wavelength conversion. Optik, 2011, 122, 754-757.	2.9	3
22	Fiber optical based parametric amplifier in a highly nonlinear fiber (HNLF) by using a ring configuration. Journal of Modern Optics, 2011, 58, 1065-1069.	1.3	3
23	Multi-wavelength fiber laser in the S-band region using a Sagnac loop mirror as a comb generator in an SOA gain medium. Laser Physics Letters, 2010, 7, 673-676.	1.4	60
24	O-band to C-band wavelength converter by using four-wave mixing effect in 1310 nm SOA. Journal of Modern Optics, 2010, 57, 2147-2153.	1.3	2
25	FIBER LOOP MIRROR FILTER WITH TWO-STAGE HIGH BIREFRINGENCE FIBERS. Progress in Electromagnetics Research C, 2009, 9, 101-108.	0.9	9