
Xueying Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5486455/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A high density genetic map and QTL for agronomic and yield traits in Foxtail millet [Setaria italica (L.) P. Beauv.]. BMC Genomics, 2016, 17, 336.	2.8	83
2	Silicone dielectric elastomer with improved actuated strain at low electric field and high self-healing efficiency by constructing supramolecular network. Chemical Engineering Journal, 2020, 384, 123242.	12.7	81
3	Fine-mapping qFS07.1 controlling fiber strength in upland cotton (Gossypium hirsutum L.). Theoretical and Applied Genetics, 2017, 130, 795-806.	3.6	63
4	Mechanical, dielectric and actuated properties of carboxyl grafted silicone elastomer composites containing epoxy-functionalized TiO2 filler. Chemical Engineering Journal, 2020, 393, 124791.	12.7	55
5	Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.). Molecular Genetics and Genomics, 2015, 290, 1683-1700.	2.1	54
6	Simultaneously improved dielectric and mechanical properties of silicone elastomer by designing a dual crosslinking network. Polymer Chemistry, 2019, 10, 633-645.	3.9	51
7	A supramolecular silicone dielectric elastomer with a high dielectric constant and fast and highly efficient self-healing under mild conditions. Journal of Materials Chemistry A, 2020, 8, 23330-23343.	10.3	43
8	The role of dipole structure and their interaction on the electromechanical and actuation performance of homogeneous silicone dielectric elastomers. Polymer, 2019, 165, 1-10.	3.8	42
9	Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.). Molecular Genetics and Genomics, 2017, 292, 1281-1306.	2.1	36
10	Electrochemical sensor based on novel two-dimensional nanohybrids: MoS ₂ nanosheets conjugated with organic copper nanowires for simultaneous detection of hydrogen peroxide and ascorbic acid. Inorganic Chemistry Frontiers, 2018, 5, 112-119.	6.0	33
11	Dielectric elastomer sensor with high dielectric constant and capacitive strain sensing properties by designing polar-nonpolar fluorosilicone multiblock copolymers and introducing poly(dopamine) modified CNTs. Composites Part B: Engineering, 2021, 223, 109103.	12.0	33
12	Fine mapping and RNA-Seq unravels candidate genes for a major QTL controlling multiple fiber quality traits at the T1 region in upland cotton. BMC Genomics, 2016, 17, 295.	2.8	31
13	Physiological characteristics and metabolomics reveal the tolerance mechanism to low nitrogen in <i>Clycine soja</i> leaves. Physiologia Plantarum, 2020, 168, 819-834.	5.2	23
14	Physiological and metabolomics analyses of young and old leaves from wild and cultivated soybean seedlings under low-nitrogen conditions. BMC Plant Biology, 2019, 19, 389.	3.6	21
15	Conductive, self-healing and recyclable electrodes for dielectric elastomer generator with high energy density. Chemical Engineering Journal, 2022, 429, 132258.	12.7	21
16	Epitaxial Crystallization of Isotactic Poly(methyl methacrylate) from Different States on Highly Oriented Polyethylene Thin Film. Journal of Physical Chemistry B, 2018, 122, 9425-9433.	2.6	19
17	Metabolomics reveals the drought-tolerance mechanism in wild soybean (Glycine soja). Acta Physiologiae Plantarum, 2019, 41, 1.	2.1	19
18	Thermoplastic Polyurethane Dielectric Elastomers with High Actuated Strain and Good Mechanical Strength by Introducing Ester Group Grafted Polymethylvinylsiloxane. Industrial & Engineering Chemistry Research, 2021, 60, 4883-4891.	3.7	19

XUEYING LIU

#	Article	IF	CITATIONS
19	Electrostatic Assembly of Platinum Nanoparticles along Electrospun Polymeric Nanofibers for High Performance Electrochemical Sensors. Nanomaterials, 2017, 7, 236.	4.1	18
20	Grafting of Isobutylene–Isoprene Rubber with Glycidyl Methacrylate and Its Reactive Compatibilization Effect on Isobutylene–Isoprene Rubber/Polyamides 12 Blends. Industrial & Engineering Chemistry Research, 2021, 60, 16258-16266.	3.7	13
21	Largely improved generating energy density, efficiency, and fatigue life of DEG by designing TiO ₂ /LNBR/SiR DE composites with a self-assembled structure. Journal of Materials Chemistry A, 2022, 10, 9524-9534.	10.3	9