List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/548628/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drug-resistant hypertension in primary aldosteronism patients undergoing adrenal vein sampling: the AVIS-2-RH study. European Journal of Preventive Cardiology, 2022, 29, e85-e93.	0.8	19
2	A novel MRPS34 gene mutation with combined OXPHOS deficiency in an adult patient with Leigh syndrome. Molecular Genetics and Metabolism Reports, 2022, 30, 100830.	0.4	1
3	Anthropometrics, Dietary Intake and Body Composition in Urea Cycle Disorders and Branched Chain Organic Acidemias: A Case Study of 18 Adults on Low-Protein Diets. Nutrients, 2022, 14, 467.	1.7	2
4	Peptidergic G Protein–Coupled Receptor Regulation of Adrenal Function: Bench to Bedside and Back. Endocrine Reviews, 2022, 43, 1038-1050.	8.9	6
5	Preanalytical Considerations and Outpatient Versus Inpatient Tests of Plasma Metanephrines to Diagnose Pheochromocytoma. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e3689-e3698.	1.8	4
6	Genetic Diagnosis in a Cohort of Adult Patients with Inherited Metabolic Diseases: A Single-Center Experience. Biomolecules, 2022, 12, 920.	1.8	1
7	High sodium intake, glomerular hyperfiltration, and protein catabolism in patients with essential hypertension. Cardiovascular Research, 2021, 117, 1372-1381.	1.8	27
8	Aldosterone synthase inhibitors for cardiovascular diseases: A comprehensive review of preclinical, clinical and in silico data. Pharmacological Research, 2021, 163, 105332.	3.1	23
9	SARS CoV2 infection in a young subject affected by arginosuccinate synthase deficiency: A case report of epilepsy worsening. Molecular Genetics and Metabolism Reports, 2021, 26, 100698.	0.4	2
10	Familial hyperaldosteronism type 1 and pregnancy: successful treatment with low dose dexamethasone. Blood Pressure, 2021, 30, 133-137.	0.7	6
11	Aldosterone and cortisol synthesis regulation by angiotensin-(1-7) and angiotensin-converting enzyme 2 in the human adrenal cortex. Journal of Hypertension, 2021, 39, 1577-1585.	0.3	9
12	HIGH SODIUM INTAKE INDUCES A CATABOLIC STATE VIA GLOMERULAR HYPERFILTRATION AND ENHANCED GLOMERULOTUBULAR BALANCE IN PATIENTS WITH ESSENTIAL HYPERTENSION. Journal of Hypertension, 2021, 39, e78.	0.3	0
13	ACE2 AND ANGIOTENSIN-(1-7) AND ALDOSTERONE BIOSYNTHESIS IN HUMAN ADRENOCORTICAL TISSUES. Journal of Hypertension, 2021, 39, e60.	0.3	0
14	DRUG-RESISTANT HYPERTENSION IN PRIMARY ALDOSTERONISM. Journal of Hypertension, 2021, 39, e356.	0.3	0
15	Angiotensin peptides in the regulation of adrenal cortical function. Exploration of Medicine, 2021, 2, 294-304.	1.5	2
16	High prolactin levels in dihydropteridine reductase deficiency: A sign of therapy failure or additional pathology?. JIMD Reports, 2021, 61, 48-51.	0.7	4
17	Targeted Metabolomics as a Tool in Discriminating Endocrine From Primary Hypertension. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e1111-e1128.	1.8	19
18	Subtyping of Primary Aldosteronism in the AVIS-2 Study: Assessment of Selectivity and Lateralization. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 2042-2052.	1.8	65

#	Article	IF	CITATIONS
19	Nutrient Intake and Nutritional Status in Adult Patients with Inherited Metabolic Diseases Treated with Low-Protein Diets: A Review on Urea Cycle Disorders and Branched Chain Organic Acidemias. Nutrients, 2020, 12, 3331.	1.7	8
20	Disease monitoring of Primary Aldosteronism. Best Practice and Research in Clinical Endocrinology and Metabolism, 2020, 34, 101417.	2.2	4
21	Vitamin D supplementation: a novel therapy for aldosteronism?. Nature Reviews Endocrinology, 2020, 16, 303-304.	4.3	4
22	PTH Modulation by Aldosterone and Angiotensin II is Blunted in Hyperaldosteronism and Rescued by Adrenalectomy. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 3726-3734.	1.8	22
23	Aldosterone Stimulates Its Biosynthesis Via a Novel GPER-Mediated Mechanism. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 6316-6324.	1.8	15
24	Adrenal venous sampling: cosyntropin stimulation or not?. European Journal of Endocrinology, 2019, 181, D15-D26.	1.9	31
25	Aldosterone-Producing Adenomas; Genetics. , 2019, , 631-637.		0
26	Abstract 058: High Sodium Intake Induces a Catabolic State via Glomerular Hyperfiltration and Enhanced Glomerulotubular Balance in Essential Hypertension. Hypertension, 2019, 74, .	1.3	0
27	Mutations of the Twik-Related Acid-Sensitive K+ Channel 2 Promoter in Human Primary Aldosteronism. Endocrinology, 2018, 159, 1352-1359.	1.4	6
28	The angiotensin type 2 receptor in the human adrenocortical zona glomerulosa and in aldosterone-producing adenoma: low expression and no functional role. Clinical Science, 2018, 132, 627-640.	1.8	17
29	Subtyping of primary aldosteronism with adrenal vein sampling: Hormone- and side-specific effects of cosyntropin and metoclopramide. Surgery, 2018, 163, 789-795.	1.0	28
30	Saga of Familial Hyperaldosteronism. Hypertension, 2018, 71, 1010-1014.	1.3	27
31	Genetic screening in arterial hypertension. Nature Reviews Endocrinology, 2017, 13, 289-298.	4.3	27
32	Expression and functional role of the prorenin receptor in the human adrenocortical zona glomerulosa and in primary aldosteronism. Journal of Hypertension, 2015, 33, 1014-1022.	0.3	9
33	A Meta-Analysis of Somatic KCNJ5 K ⁺ Channel Mutations In 1636 Patients With an Aldosterone-Producing Adenoma. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1089-E1095.	1.8	162
34	The molecular basis of primary aldosteronism: from chimeric gene to channelopathy. Current Opinion in Pharmacology, 2015, 21, 35-42.	1.7	28
35	Lipoprotein-associated phospholipase A2 single-nucleotide polymorphisms and cardiovascular events in patients with coronary artery disease. Journal of Cardiovascular Medicine, 2015, 16, 29-36.	0.6	14
36	Abstract P212: A Meta Analysis of Somatic KCNJ5 Mutations in 1636 Primary Aldosteronism Patients. Hypertension, 2015, 66, .	1.3	0

#	Article	IF	CITATIONS
37	A Novel KCNJ5-insT149 Somatic Mutation Close to, but Outside, the Selectivity Filter Causes Resistant Hypertension by Loss of Selectivity for Potassium. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1765-E1773.	1.8	55
38	Primary Aldosteronism: Molecular Mechanisms and Diagnosis. , 2014, , 1-20.		1
39	GPER-1 and Estrogen Receptor-Î ² Ligands Modulate Aldosterone Synthesis. Endocrinology, 2014, 155, 4296-4304.	1.4	49
40	Lower Expression of the TWIK-Related Acid-Sensitive K+ Channel 2 (TASK-2) Gene Is a Hallmark of Aldosterone-Producing Adenoma Causing Human Primary Aldosteronism. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E674-E682.	1.8	48
41	Aldosterone-induced oxidative stress. Journal of Hypertension, 2014, 32, 2280-2281.	0.3	4
42	Abstract 011: Identification and Electrophysiological Characterization of a Novel Somatic Mutation (insT149KCNJ5) of the Potassium Channel Kir3.4 (KCNJ5). Hypertension, 2014, 64, .	1.3	0
43	Diabetic nephropathy in Type 1 diabetes mellitus (T1DM) is associated with altered expression of genes regulating TGF-Beta signalling, fibrosis, apoptosis and cell cycle. Studies in primary cultures of human fibroblasts. Nutrition, Metabolism and Cardiovascular Diseases, 2013, 23, S55.	1.1	0
44	Abstract 359: Modulation of Aldosterone Synthase by Estrogens: Evidence for an Interaction of Gper-1 and Estrogen B Receptors and Relevance for the Gender Dimorphism of Blood Pressure. Hypertension, 2013, 62, .	1.3	0
45	Prevalence, Clinical, and Molecular Correlates of <i>KCNJ5</i> Mutations in Primary Aldosteronism. Hypertension, 2012, 59, 592-598.	1.3	246
46	Abstract 280: Modulation of Aldosterone Synthesis in Human Adrenocortical Cells by Estrogens via an Interaction on Beta Estrogen and Gpr30 Receptor Subtypes. Hypertension, 2012, 60, .	1.3	0
47	Caldesmon over-expression in type 1 diabetic nephropathy. Journal of Diabetes and Its Complications, 2011, 25, 114-121.	1.2	5
48	Primary Hyperparathyroidism With Concurrent Primary Aldosteronism. Hypertension, 2011, 58, 341-346.	1.3	79
49	Expression and Functional Role of Urotensin-II and Its Receptor in the Adrenal Cortex and Medulla: Novel Insights for the Pathophysiology of Primary Aldosteronism. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 684-690.	1.8	26
50	A twin study of heritability of plasma lipoprotein-associated phospholipase A2 (Lp-PLA2) mass and activity. Atherosclerosis, 2009, 205, 181-185.	0.4	12
51	Glycolytic enzyme expression and pyruvate kinase activity in cultured fibroblasts from type 1 diabetic patients with and without nephropathy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2008, 1782, 627-633.	1.8	22
52	Heterogeneity of Aldosterone-Producing Adenomas Revealed by a Whole Transcriptome Analysis. Hypertension, 2007, 50, 1106-1113.	1.3	65
53	Gαi2 expression, hypertension and insulin resistance. Journal of Hypertension, 2006, 24, 785.	0.3	2
54	Reduced expression of regulator of G-protein signaling 2 (RGS2) in hypertensive patients increases calcium mobilization and ERK1/2 phosphorylation induced by angiotensin II. Journal of Hypertension, 2006, 24, 1115-1124.	0.3	122

#	Article	IF	CITATIONS
55	Insulin generates free radicals in human fibroblasts ex vivo by a protein kinase C-dependent mechanism, which is inhibited by pravastatin. Free Radical Biology and Medicine, 2006, 41, 473-483.	1.3	23
56	Angiotensin II-induced over-activation of p47phox in fibroblasts from hypertensives: which role in the enhanced ERK1/2 responsiveness to angiotensin II?. Journal of Hypertension, 2005, 23, 793-800.	0.3	17
57	G-Protein ??3-Subunit Gene C825T Polymorphism and Cardiovascular Risk. High Blood Pressure and Cardiovascular Prevention, 2004, 11, 107-112.	1.0	1