Chaoqing Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5485960/publications.pdf

Version: 2024-02-01

331670 214800 2,318 61 21 47 h-index citations g-index papers 63 63 63 3260 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Brightness Analysis per Moving Particle: <i>In Situ</i> Analysis of Alkaline Phosphatase in Living Cells. Analytical Chemistry, 2022, 94, 5181-5189.	6.5	7
2	Analyses of p73 Protein Oligomerization and p73–MDM2 Interaction in Single Living Cells Using In Situ Single Molecule Spectroscopy. Analytical Chemistry, 2021, 93, 886-894.	6 . 5	5
3	Simultaneously monitoring endogenous MAPK members in single living cells by multi-channel fluorescence correlation spectroscopy. Analyst, The, 2021, 146, 2581-2590.	3.5	5
4	Studying Homo-oligomerization and Hetero-oligomerization of MDMX and MDM2 Proteins in Single Living Cells by Using In Situ Fluorescence Correlation Spectroscopy. Biochemistry, 2021, 60, 1498-1505.	2.5	3
5	In Situ Assay of Proteins Incorporated with Unnatural Amino Acids in Single Living Cells by Differenced Resonance Light Scattering Correlation Spectroscopy. Analytical Chemistry, 2021, 93, 9329-9336.	6.5	7
6	Single-Particle Catalytic Analysis by a Photon Burst Counting Technique Combined with a Microfluidic Chip. Analytical Chemistry, 2021, 93, 9752-9759.	6.5	3
7	The Theoretical Model, Method, and Applications of Scattering Photon Burst Counting Based on an Objective Scanning Technique. Analytical Chemistry, 2021, 93, 12556-12564.	6. 5	3
8	Artificial Aquaporin That Restores Wound Healing of Impaired Cells. Journal of the American Chemical Society, 2020, 142, 15638-15643.	13.7	54
9	In Situ Study of Interactions between Endogenous c- <i>myc</i> mRNA with CRDBP in a Single Living Cell by Combining Fluorescence Cross-Correlation Spectroscopy with Molecular Beacons. Analytical Chemistry, 2020, 92, 2988-2996.	6. 5	12
10	Fluctuation correlation spectroscopy and its applications in homogeneous analysis. Analytical and Bioanalytical Chemistry, 2019, 411, 4523-4540.	3.7	10
11	<i>In situ</i> study of RSK2 kinase activity in a single living cell by combining single molecule spectroscopy with activity-based probes. Analyst, The, 2019, 144, 3756-3764.	3 . 5	4
12	Controllable "Clicked-to-Assembled―Plasmonic Core–Satellite Nanostructures and Its Surface-Enhanced Fluorescence in Living Cells. ACS Omega, 2019, 4, 21161-21168.	3 . 5	2
13	In Situ Monitoring of p53 Protein and MDM2 Protein Interaction in Single Living Cells Using Single-Molecule Fluorescence Spectroscopy. Analytical Chemistry, 2018, 90, 6144-6151.	6.5	20
14	A study of the diffusion dynamics and concentration distribution of gold nanospheres (GNSs) without fluorescent labeling inside live cells using fluorescence single particle spectroscopy. Nanoscale, 2018, 10, 5309-5317.	5 . 6	4
15	Quantitative Determination of Telomerase Activity by Combining Fluorescence Correlation Spectroscopy with Telomerase Repeat Amplification Protocol. Analytical Chemistry, 2018, 90, 1006-1013.	6. 5	21
16	Analysis of the concentrations and size distributions of cell-free DNA in schizophrenia using fluorescence correlation spectroscopy. Translational Psychiatry, 2018, 8, 104.	4.8	22
17	Chiral ligandâ€induced photoluminescence intermittence difference of CdTe quantum dots. Luminescence, 2018, 33, 1150-1156.	2.9	3
18	Strategies to reduce detection volume of fluorescence correlation spectroscopy (FCS) to realize physiological concentration measurements. TrAC - Trends in Analytical Chemistry, 2017, 89, 181-189.	11.4	4

#	Article	IF	CITATIONS
19	Fluorescence and Scattering Light Cross Correlation Spectroscopy and Its Applications in Homogeneous Immunoassay. Analytical Chemistry, 2017, 89, 5230-5237.	6.5	31
20	A study of the dynamics of PTEN proteins in living cells using <i>in vivo</i> fluorescence correlation spectroscopy. Methods and Applications in Fluorescence, 2017, 5, 024008.	2.3	7
21	Size Distribution of Nanoparticles in Solution Characterized by Combining Resonance Light Scattering Correlation Spectroscopy with the Maximum Entropy Method. Analytical Chemistry, 2017, 89, 12609-12616.	6.5	14
22	Determination of Caspase-3 Activity and Its Inhibition Constant by Combination of Fluorescence Correlation Spectroscopy with a Microwell Chip. Analytical Chemistry, 2017, 89, 9788-9796.	6.5	14
23	Size-dependent optical properties of conjugated polymer nanoparticles. RSC Advances, 2017, 7, 55957-55965.	3.6	11
24	A single particle method for direct determination of molar concentrations of gold nanoparticles, and its application to the determination of the activity of caspase 3 and drug-induced cell apoptosis. Mikrochimica Acta, 2016, 183, 2457-2465.	5.0	13
25	Suppressed blinking behavior of CdSe/CdS QDs by polymer coating. Nanoscale, 2016, 8, 5006-5014.	5.6	13
26	Non-blinking (Zn)CulnS/ZnS Quantum Dots Prepared by In Situ Interfacial Alloying Approach. Scientific Reports, 2015, 5, 15227.	3.3	52
27	Truly Fluorescent Excitationâ€Dependent Carbon Dots and Their Applications in Multicolor Cellular Imaging and Multidimensional Sensing. Advanced Materials, 2015, 27, 7782-7787.	21.0	591
28	An aptamer-based single particle method for sensitive detection of thrombin using fluorescent quantum dots as labeling probes. Talanta, 2015, 144, 13-19.	5.5	15
29	A sensitive and microscale method for drug screening combining affinity probes and single molecule fluorescence correlation spectroscopy. Analyst, The, 2015, 140, 1207-1214.	3.5	12
30	A sensitive assay of mercury using fluorescence correlation spectroscopy of gold nanoparticles. Luminescence, 2015, 30, 605-610.	2.9	6
31	Homogeneous immunoassays by using photon burst counting technique of single gold nanoparticles. Talanta, 2015, 132, 698-704.	5.5	11
32	Fluorescence correlation spectroscopy of gold nanoparticles, and its application to an aptamer-based homogeneous thrombin assay. Mikrochimica Acta, 2014, 181, 723-730.	5.0	21
33	Controllable Blinkingâ€toâ€Nonblinking Behavior of Aqueous CdTeS Alloyed Quantum Dots. Chemistry - A European Journal, 2014, 20, 1940-1946.	3.3	15
34	Assessing the Blinking State of Fluorescent Quantum Dots in Free Solution by Combining Fluorescence Correlation Spectroscopy with Ensemble Spectroscopic Methods. Langmuir, 2014, 30, 12969-12976.	3.5	9
35	Tempo-Spatially Resolved Scattering Correlation Spectroscopy under Dark-Field Illumination and Its Application to Investigate Dynamic Behaviors of Gold Nanoparticles in Live Cells. Journal of the American Chemical Society, 2014, 136, 2775-2785.	13.7	47
36	Coupling of fluorescence correlation spectroscopy with capillary and microchannel analytical systems and its applications. Electrophoresis, 2014, 35, 2267-2278.	2.4	12

#	Article	IF	Citations
37	Optical Trapping Effect and Its Calibration Method in Resonance Light Scattering Correlation Spectroscopy of Gold Nanoparticles in Solution. Journal of Physical Chemistry C, 2014, 118, 14495-14501.	3.1	8
38	A sensitive, universal and homogeneous method for determination of biomarkers in biofluids by resonance light scattering correlation spectroscopy (RLSCS). Talanta, 2013, 116, 501-507.	5.5	20
39	Sensitive Single Particle Method for Characterizing Rapid Rotational and Translational Diffusion and Aspect Ratio of Anisotropic Nanoparticles and Its Application in Immunoassays. Analytical Chemistry, 2013, 85, 9433-9438.	6.5	40
40	Probing site-exclusive binding of aqueous QDs and their organelle-dependent dynamics in live cells by single molecule spectroscopy. Analyst, The, 2013, 138, 2871.	3.5	9
41	Hydrodynamic Size-Dependent Cellular Uptake of Aqueous QDs Probed by Fluorescence Correlation Spectroscopy. Journal of Physical Chemistry B, 2012, 116, 12125-12132.	2.6	37
42	Highly Sensitive Method for Assay of Drug-Induced Apoptosis Using Fluorescence Correlation Spectroscopy. Analytical Chemistry, 2012, 84, 7350-7358.	6.5	18
43	Spatially Resolved Scattering Correlation Spectroscopy Using a Total Internal Reflection Configuration. Analytical Chemistry, 2012, 84, 3561-3567.	6.5	14
44	Experimental Studies on Blinking Behavior of Single InP/ZnS Quantum Dots: Effects of Synthetic Conditions and UV Irradiation. Journal of Physical Chemistry C, 2012, 116, 3944-3950.	3.1	23
45	Waterâ€soluble mercaptoundecanoic acid (MUA)â€coated CdTe quantum dots: oneâ€step microwave synthesis, characterization and cancer cell imaging. Luminescence, 2012, 27, 199-203.	2.9	11
46	Single particle technique for one-step homogeneous detection of cancer marker using gold nanoparticle probes. Analyst, The, 2011, 136, 4247.	3.5	36
47	Measurements for molar extinction coefficients of aqueous quantum dots. Analyst, The, 2010, 135, 1395.	3.5	22
48	Studies on Interaction of CdTe Quantum Dots with Bovine Serum Albumin Using Fluorescence Correlation Spectroscopy. Journal of Fluorescence, 2009, 19, 151-157.	2.5	42
49	Fluorescence cross-correlation spectroscopy using single wavelength laser. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2009, 4, 191-195.	0.4	0
50	Study on homogeneous competitive immune reaction by fluorescence correlation spectroscopy: Using synthetic peptide as antigen. Talanta, 2009, 79, 971-974.	5.5	11
51	Host–Guest Interaction of Chaperonin GroEL and Waterâ€Soluble CdTe Quantum Dots and its Sizeâ€Selective Inclusion. ChemPhysChem, 2008, 9, 2245-2251.	2.1	7
52	<i>Characterization of Waterâ€soluble Luminescent Quantum Dots by Fluorescence Correlation Spectroscopy</i> <ir> Annals of the New York Academy of Sciences, 2008, 1130, 253-261. </ir>	3.8	15
53	Characterization of solution-phase DNA hybridization by fluorescence correlation spectroscopy: Rapid genotyping of C677T from methylenetetrahydrofolate reductase gene. Talanta, 2007, 71, 1192-1197.	5.5	10
54	On-Line Investigation of Laser-Induced Aggregation and Photoactivation of CdTe Quantum Dots by Fluorescence Correlation Spectroscopy. Journal of Physical Chemistry C, 2007, 111, 7918-7923.	3.1	22

#	Article	IF	CITATIONS
55	Single-Molecule Technology for Rapid Detection of DNA Hybridization Based on Resonance Light Scattering of Gold Nanoparticles. ChemBioChem, 2007, 8, 1126-1129.	2.6	55
56	Study of Fluorescence Quenching and Dialysis Process of CdTe Quantum Dots, Using Ensemble Techniques and Fluorescence Correlation Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 11069-11075.	2.6	166
57	Coupling Fluorescence Correlation Spectroscopy with Microchip Electrophoresis to Determine the Effective Surface Charge of Water-Soluble Quantum Dots. Small, 2006, 2, 534-538.	10.0	36
58	Facile One-Pot Synthesis of Luminescent, Water-Soluble, and Biocompatible Glutathione-Coated CdTe Nanocrystals. Small, 2006, 2, 747-751.	10.0	204
59	A Resonance Energy Transfer between Chemiluminescent Donors and Luminescent Quantum-Dots as Acceptors (CRET). Angewandte Chemie - International Edition, 2006, 45, 5140-5143.	13.8	224
60	Single Nonblinking CdTe Quantum Dots Synthesized in Aqueous Thiopropionic Acid. Angewandte Chemie - International Edition, 2006, 45, 7588-7591.	13.8	61
61	Sizes of water-soluble luminescent quantum dots measured by fluorescence correlation spectroscopy. Analytica Chimica Acta, 2005, 546, 46-51.	5.4	53