Jinhua Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5485393/publications.pdf

Version: 2024-02-01

238 papers 12,558 citations

51 h-index 99 g-index

242 all docs 242 docs citations

times ranked

242

6681 citing authors

#	Article	IF	CITATIONS
1	Thermal runaway caused fire and explosion of lithium ion battery. Journal of Power Sources, 2012, 208, 210-224.	4.0	2,052
2	A review of lithium ion battery failure mechanisms and fire prevention strategies. Progress in Energy and Combustion Science, 2019, 73, 95-131.	15.8	832
3	Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy, 2019, 55, 93-114.	8.2	533
4	Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polymer Degradation and Stability, 2013, 98, 2687-2696.	2.7	326
5	Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions. Applied Energy, 2016, 182, 464-474.	5.1	197
6	Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test. Journal of Power Sources, 2015, 285, 80-89.	4.0	186
7	Thermal Behavior of Lithiated Graphite with Electrolyte in Lithium-lon Batteries. Journal of the Electrochemical Society, 2006, 153, A329.	1.3	183
8	Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method. Applied Energy, 2014, 129, 261-273.	5.1	179
9	Experimental and numerical study on a novel hybrid battery thermal management system integrated forced-air convection and phase change material. Energy Conversion and Management, 2019, 195, 1371-1381.	4.4	173
10	Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct. Combustion and Flame, 2012, 159, 1523-1538.	2.8	170
11	Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode. Applied Energy, 2016, 183, 659-673.	5.1	169
12	Thermal stability of LiPF6/EC+DEC electrolyte with charged electrodes for lithium ion batteries. Thermochimica Acta, 2005, 437, 12-16.	1.2	153
13	Numerical study on the thermal performance of a composite board in battery thermal management system. Applied Thermal Engineering, 2016, 106, 131-140.	3.0	132
14	Premixed flame propagation in hydrogen explosions. Renewable and Sustainable Energy Reviews, 2018, 81, 1988-2001.	8.2	123
15	Experimental study on the behaviors and shape changes of premixed hydrogen–air flames propagating in horizontal duct. International Journal of Hydrogen Energy, 2011, 36, 6325-6336.	3.8	120
16	Experimental study on the application of phase change material in the dynamic cycling of battery pack system. Energy Conversion and Management, 2016, 128, 12-19.	4.4	115
17	An experimental study of distorted tulip flame formation in a closed duct. Combustion and Flame, 2013, 160, 1725-1728.	2.8	113
18	Comparison analysis on the thermal runaway of lithium-ion battery under two heating modes. Journal of Hazardous Materials, 2018, 344, 733-741.	6.5	109

#	Article	IF	CITATIONS
19	The combustion behavior of large scale lithium titanate battery. Scientific Reports, 2015, 5, 7788.	1.6	104
20	Sample width and thickness effects on upward flame spread over PMMA surface. Journal of Hazardous Materials, 2018, 342, 114-120.	6.5	97
21	Self-heating reaction and thermal runaway criticality of the lithium ion battery. International Journal of Heat and Mass Transfer, 2020, 149, 119178.	2.5	91
22	Experimental study on the characteristics of horizontal flame spread over XPS surface on plateau. Journal of Hazardous Materials, 2011, 189, 34-39.	6.5	82
23	Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber. Journal of Hazardous Materials, 2014, 268, 132-139.	6.5	80
24	Combustion behavior of lithium iron phosphate battery induced by external heat radiation. Journal of Loss Prevention in the Process Industries, 2017, 49, 961-969.	1.7	80
25	Application of genetic algorithm to pyrolysis of typical polymers. Fuel Processing Technology, 2015, 138, 48-55.	3.7	79
26	Numerical study on tab dimension optimization of lithium-ion battery from the thermal safety perspective. Applied Thermal Engineering, 2018, 142, 148-165.	3.0	79
27	A study of self-accelerating decomposition temperature (SADT) using reaction calorimetry. Journal of Loss Prevention in the Process Industries, 2001, 14, 331-336.	1.7	77
28	Catalytic effects of inorganic acids on the decomposition of ammonium nitrate. Journal of Hazardous Materials, 2005, 127, 204-210.	6.5	77
29	Correlation study between flammability and the width of organic thermal insulation materials for building exterior walls. Energy and Buildings, 2014, 82, 243-249.	3.1	73
30	Experimental study on a novel safety strategy of lithium-ion battery integrating fire suppression and rapid cooling. Journal of Energy Storage, 2020, 28, 101185.	3.9	73
31	4-Isopropyl Phenyl Diphenyl Phosphate as Flame-Retardant Additive for Lithium-Ion Battery Electrolyte. Electrochemical and Solid-State Letters, 2005, 8, A467.	2.2	71
32	Flame propagation in hybrid mixture of coal dust and methane. Journal of Loss Prevention in the Process Industries, 2007, 20, 691-697.	1.7	70
33	Thermal runaway and fire behavior investigation of lithium ion batteries using modified cone calorimeter. Journal of Thermal Analysis and Calorimetry, 2019, 135, 2879-2889.	2.0	70
34	Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode. Renewable and Sustainable Energy Reviews, 2021, 139, 110717.	8.2	70
35	Micro calorimeter study on the thermal stability of lithium-ion battery electrolytes. Journal of Loss Prevention in the Process Industries, 2006, 19, 561-569.	1.7	69
36	Heat transfer in the dynamic cycling of lithium–titanate batteries. International Journal of Heat and Mass Transfer, 2016, 93, 896-905.	2.5	69

#	Article	IF	CITATIONS
37	Experimental and numerical methods to investigate the overcharge caused lithium plating for lithium ion battery. Energy Storage Materials, 2020, 32, 91-104.	9.5	68
38	The Efficiency of Heptafluoropropane Fire Extinguishing Agent on Suppressing the Lithium Titanate Battery Fire. Fire Technology, 2016, 52, 387-396.	1.5	67
39	Flame propagation mechanisms in dust explosions. Journal of Loss Prevention in the Process Industries, 2015, 36, 186-194.	1.7	66
40	Electrochemical performance and thermal stability analysis of LiNi Co Mn O2 cathode based on a composite safety electrolyte. Journal of Hazardous Materials, 2018, 351, 260-269.	6.5	66
41	Experimental and modeling analysis of jet flow and fire dynamics of 18650-type lithium-ion battery. Applied Energy, 2021, 281, 116054.	5.1	66
42	Correlation analysis of sample thickness, heat flux, and cone calorimetry test data of polystyrene foam. Journal of Thermal Analysis and Calorimetry, 2015, 119, 229-238.	2.0	65
43	Concentration profile of particles across a flame propagating through an iron particle cloud. Combustion and Flame, 2003, 134, 381-387.	2.8	60
44	An experimental study of premixed hydrogen/air flame propagation in a partially open duct. International Journal of Hydrogen Energy, 2014, 39, 6233-6241.	3.8	60
45	Kinetics and volatile products of thermal degradation of building insulation materials. Thermochimica Acta, 2012, 547, 120-125.	1.2	58
46	Thermal Stability of Delithiated LiMn[sub 2]O[sub 4] with Electrolyte for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2007, 154, A263.	1.3	57
47	Thermal Stabilities of Some Lithium Salts and Their Electrolyte Solutions With and Without Contact to a LiFePO[sub 4] Electrode. Journal of the Electrochemical Society, 2010, 157, A1170.	1.3	57
48	Non-dimensional analysis of the criticality of Li-ion battery thermal runaway behavior. Journal of Hazardous Materials, 2019, 369, 268-278.	6.5	56
49	Experimental investigation of spontaneous ignition and flame propagation at pressurized hydrogen release through tubes with varying cross-section. Journal of Hazardous Materials, 2016, 320, 18-26.	6.5	54
50	Structure of flames propagating through aluminum particles cloud and combustion process of particles. Journal of Loss Prevention in the Process Industries, 2006, 19, 769-773.	1.7	53
51	Experimental and numerical study on premixed hydrogen/air flame propagation in a horizontal rectangular closed duct. International Journal of Hydrogen Energy, 2010, 35, 1367-1376.	3.8	53
52	Thermal analysis of nickel cobalt lithium manganese with varying nickel content used for lithium ion batteries. Thermochimica Acta, 2017, 655, 176-180.	1.2	53
53	Thermal degradation study of pure rigid polyurethane in oxidative and non-oxidative atmospheres. Journal of Analytical and Applied Pyrolysis, 2016, 120, 269-283.	2.6	52
54	Effects of ignition location on premixed hydrogen/air flame propagation in a closed combustion tube. International Journal of Hydrogen Energy, 2014, 39, 8557-8563.	3.8	50

#	Article	IF	CITATIONS
55	Theoretical and experimental study on the effect of nitrogen content on the thermal characteristics of nitrocellulose under low heating rates. Cellulose, 2019, 26, 763-776.	2.4	50
56	Experimental study on spontaneous ignition and flame propagation of high-pressure hydrogen release via a tube into air. Fuel, 2016, 181, 811-819.	3.4	49
57	Experimental study on the synergistic effect of gas extinguishing agents and water mist on suppressing lithium-ion battery fires. Journal of Energy Storage, 2020, 32, 101801.	3.9	48
58	Prediction of the critical condition for flame acceleration over wood surface with different sample orientations. Combustion and Flame, 2012, 159, 2999-3002.	2.8	47
59	Experimental study on flow characteristics and spontaneous ignition produced by pressurized hydrogen release through an Omega-shaped tube into atmosphere. Fuel, 2016, 184, 770-779.	3.4	47
60	An experimental and theoretical study of optimized selection and model reconstruction for ammonium nitrate pyrolysis. Journal of Hazardous Materials, 2019, 364, 539-547.	6.5	47
61	Effects of obstacles inside the tube on the shock wave propagation and spontaneous ignition of high-pressure hydrogen. Fuel, 2019, 236, 1586-1594.	3.4	47
62	The critical characteristics and transition process of lithium-ion battery thermal runaway. Energy, 2020, 213, 119082.	4.5	47
63	Study on the influence of moisture content on thermal stability of propellant. Journal of Hazardous Materials, 2009, 168, 536-541.	6.5	46
64	Experimental study and three-dimensional simulation of premixed hydrogen/air flame propagation in a closed duct. International Journal of Hydrogen Energy, 2012, 37, 11466-11473.	3.8	46
65	Effects of nitrogen content on pyrolysis behavior of nitrocellulose. Fuel, 2020, 264, 116853.	3.4	46
66	Refined study on lithium ion battery combustion in open space and a combustion chamber. Chemical Engineering Research and Design, 2020, 139, 133-146.	2.7	46
67	Assessment on thermal hazards of reactive chemicals in industry: State of the Art and perspectives. Progress in Energy and Combustion Science, 2020, 78, 100832.	15.8	46
68	Effects of altitude and sample width on the characteristics of horizontal flame spread over wood sheets. Fire Safety Journal, 2012, 51, 120-125.	1.4	45
69	Dynamics of premixed hydrogen/air flame in a closed combustion vessel. International Journal of Hydrogen Energy, 2013, 38, 12856-12864.	3.8	45
70	A comparative study on premixed hydrogen–air and propane–air flame propagations with tulip distortion in a closed duct. Fuel, 2015, 161, 248-253.	3.4	45
71	Theoretical and experimental study of width effects on horizontal flame spread over extruded and expanded polystyrene foam surfaces. Journal of Fire Sciences, 2014, 32, 193-209.	0.9	44
72	Effects of the geometry of downstream pipes with different angles on the shock ignition of high-pressure hydrogen during its sudden expansion. International Journal of Hydrogen Energy, 2017, 42, 8382-8391.	3.8	43

#	Article	IF	Citations
73	Progress on the research of fire behavior and fire protection of lithium ion battery. Fire Safety Journal, 2021, 120, 103119.	1.4	43
74	Dynamic three-dimensional stress prediction of window glass under thermal loading. International Journal of Thermal Sciences, 2012, 59, 152-160.	2.6	42
75	Experimental investigation of water spray on suppressing lithium-ion battery fires. Fire Safety Journal, 2021, 120, 103117.	1.4	42
76	Effect of sulfites on the performance of LiBOB/ \hat{I}^3 -butyrolactone electrolytes. Journal of Power Sources, 2011, 196, 776-783.	4.0	41
77	Thermal response of lithium-ion battery during charging and discharging under adiabatic conditions. Journal of Thermal Analysis and Calorimetry, 2016, 124, 417-428.	2.0	41
78	An investigation of premixed flame propagation in a closed combustion duct with a $90 \hat{A}^\circ$ bend. Applied Energy, 2014, 134, 248-256.	5.1	40
79	Effects of sample width and inclined angle on flame spread across expanded polystyrene surface in plateau and plain environments. Journal of Thermoplastic Composite Materials, 2015, 28, 111-127.	2.6	40
80	Effects of building concave structure on flame spread over extruded polystyrene thermal insulation material. Applied Thermal Engineering, 2017, 121, 802-809.	3.0	40
81	Effects of solvents and salt on the thermal stability of charged LiCoO2. Materials Research Bulletin, 2009, 44, 543-548.	2.7	39
82	Fracture behavior of a four-point fixed glass curtain wall under fire conditions. Fire Safety Journal, 2014, 67, 24-34.	1.4	39
83	Experimental study on the influence of multi-layer wire mesh on dynamics of premixed hydrogen-air flame propagation in a closed duct. International Journal of Hydrogen Energy, 2017, 42, 14809-14820.	3.8	39
84	A self-cooling and flame-retardant electrolyte for safer lithium ion batteries. Sustainable Energy and Fuels, 2018, 2, 1323-1331.	2.5	39
85	Effect of burst disk parameters on the release of high-pressure hydrogen. Fuel, 2019, 235, 485-494.	3.4	39
86	An experimental study on shock waves and spontaneous ignition produced by pressurized hydrogen release through a tube into atmosphere. International Journal of Hydrogen Energy, 2015, 40, 8281-8289.	3.8	38
87	The Efficiency of Dodecafluoro-2-Methylpentan-3-One on Suppressing the Lithium Ion Battery Fire. Journal of Electrochemical Energy Conversion and Storage, 2018, 15, .	1.1	38
88	Study on the Pyrolytic Behaviors and Kinetics of Rigid Polyurethane Foams. Procedia Engineering, 2013, 52, 377-385.	1.2	37
89	Effects of solvents and salt on the thermal stability of lithiated graphite used in lithium ion battery. Journal of Hazardous Materials, 2009, 167, 1209-1214.	6.5	36
90	Thermal and fire risk analysis of typical insulation material in a high elevation area: Influence of sidewalls, dimension and pressure. Energy Conversion and Management, 2014, 88, 516-524.	4.4	36

#	Article	IF	CITATIONS
91	A multi criteria comprehensive evaluation approach for emergency response capacity with interval 2-tuple linguistic information. Applied Soft Computing Journal, 2018, 72, 419-441.	4.1	36
92	Experimental investigation on intermittent spray cooling and toxic hazards of lithium-ion battery thermal runaway. Energy Conversion and Management, 2022, 252, 115091.	4.4	36
93	Heat generation and thermal runaway of lithium-ion battery induced by slight overcharging cycling. Journal of Power Sources, 2022, 526, 231136.	4.0	36
94	Catastrophe analysis of cylindrical lithium ion battery. Nonlinear Dynamics, 2010, 61, 763-772.	2.7	35
95	Improved thermal stability of lithium ion battery by using cresyl diphenyl phosphate as an electrolyte additive. Journal of Power Sources, 2010, 195, 7457-7461.	4.0	35
96	In-depth study on diffusion of oxygen vacancies in Li(NixCoyMnz)O2 cathode materials under thermal induction. Energy Storage Materials, 2022, 47, 51-60.	9.5	35
97	Enhancing the thermal stability of LiCoO2 electrode by 4-isopropyl phenyl diphenyl phosphate in lithium ion batteries. Journal of Power Sources, 2006, 162, 1363-1366.	4.0	34
98	Numerical study on fire response of glass facades in different installation forms. Construction and Building Materials, 2014, 61, 172-180.	3.2	34
99	A study on the dynamic behavior of premixed propane-air flames propagating in a curved combustion chamber. Fuel, 2018, 228, 342-348.	3.4	34
100	Safer Triethyl-Phosphate-Based Electrolyte Enables Nonflammable and High-Temperature Endurance for a Lithium Ion Battery. ACS Applied Energy Materials, 2020, 3, 1719-1729.	2.5	34
101	Boiling liquid expanding vapor explosion: Experimental research in the evolution of the two-phase flow and over-pressure. Journal of Hazardous Materials, 2008, 156, 530-537.	6.5	33
102	A review on research of fire dynamics in high-rise buildings. Theoretical and Applied Mechanics Letters, 2013, 3, 042001.	1.3	33
103	Experimental study on critical breaking stress of float glass under elevated temperature. Materials & Design, 2014, 60, 41-49.	5.1	33
104	Experimental study of pressure dynamics, spontaneous ignition and flame propagation during hydrogen release from high-pressure storage tank through 15 mm diameter tube and exhaust chamber connected to atmosphere. Fuel, 2016, 182, 419-427.	3.4	33
105	Experimental study on spontaneous ignition and subsequent flame development caused by high-pressure hydrogen release: Coupled effects of tube dimensions and burst pressure. Fire Safety Journal, 2018, 97, 44-53.	1.4	33
106	Application of distributed activation energy models to polymer pyrolysis: Effects of distributed model selection, characteristics, validation, and sensitivity analysis. Fuel, 2019, 254, 115594.	3.4	33
107	Experimental study on a comparison of typical premixed combustible gas-air flame propagation in a horizontal rectangular closed duct. Journal of Hazardous Materials, 2017, 327, 116-126.	6.5	32
108	Numerical study of premixed flame dynamics in a closed tube: Effect of wall boundary condition. Proceedings of the Combustion Institute, 2021, 38, 2075-2082.	2.4	32

#	Article	IF	CITATIONS
109	Spontaneous Combustion Prediction of Coal by C80 and ARC Techniques. Energy & Spontaneous Combustion Prediction of Coal by C80 and ARC Techniques. Energy & Spontaneous Combustion Prediction of Coal by C80 and ARC Techniques. Energy & Spontaneous Combustion Prediction of Coal by C80 and ARC Techniques. Energy & Spontaneous Combustion Prediction of Coal by C80 and ARC Techniques. Energy & Spontaneous Combustion Prediction of Coal by C80 and ARC Techniques. Energy & Spontaneous Combustion Prediction of Coal by C80 and ARC Techniques. Energy & Spontaneous Combustion Prediction of Coal by C80 and ARC Techniques. Energy & Spontaneous C90 and C9	2.5	31
110	Experimental study on the characteristic stages of premixed hydrogen-air flame propagation in a horizontal rectangular closed duct. International Journal of Hydrogen Energy, 2012, 37, 12028-12038.	3.8	31
111	Numerical study on lithium titanate battery thermal response under adiabatic condition. Energy Conversion and Management, 2015, 92, 184-193.	4.4	31
112	Fracture behavior of framing coated glass curtain walls under fire conditions. Fire Safety Journal, 2015, 75, 45-58.	1.4	31
113	Flammability and safety design of thermal insulation materials comprising PS foams and fire barrier materials. Materials and Design, 2016, 99, 500-508.	3.3	31
114	The efficiency and toxicity of dodecafluoro-2-methylpentan-3-one in suppressing lithium-ion battery fire. Journal of Energy Chemistry, 2022, 65, 532-540.	7.1	31
115	Spontaneous ignition of high-pressure hydrogen during its sudden release into hydrogen/air mixtures. International Journal of Hydrogen Energy, 2018, 43, 23558-23567.	3.8	30
116	Experimental investigation on effects of CO2 additions on spontaneous ignition of high-pressure hydrogen during its sudden release into a tube. International Journal of Hydrogen Energy, 2019, 44, 7041-7048.	3.8	30
117	Experimental study on thermal runaway of fully charged and overcharged lithium-ion batteries under adiabatic and side-heating test. Journal of Energy Storage, 2021, 38, 102519.	3.9	30
118	Thermal Shock Effect on the Glass Thermal Stress Response and Crack Propagation. Procedia Engineering, 2013, 62, 717-724.	1.2	29
119	Heat transfer mechanism of concurrent flame spread over rigid polyurethane foam: Effect of ambient pressure and inclined angle. International Journal of Thermal Sciences, 2020, 155, 106403.	2.6	29
120	Flame spread over the surface of thermal insulation materials in different environments. Science Bulletin, 2011, 56, 1617-1622.	1.7	28
121	Maximum temperature to withstand water film for tempered glass exposed to fire. Construction and Building Materials, 2014, 57, 15-23.	3.2	28
122	Similitude analysis and critical conditions for spontaneous ignition of hydrogen release into the atmosphere through a tube. Fuel, 2019, 245, 413-419.	3.4	28
123	Visualization of spontaneous ignition and flame behavior in tubes with and without obstacles during the high-pressure hydrogen release. Chemical Engineering Research and Design, 2021, 153, 354-362.	2.7	28
124	Hydrogen sensing properties of Pd/SnO2 nano-spherical composites under UV enhancement. Sensors and Actuators B: Chemical, 2021, 346, 130557.	4.0	28
125	Experimental and numerical study of premixed flame propagation in a closed duct with a 90° curved section. International Journal of Heat and Mass Transfer, 2013, 66, 818-822.	2.5	27
126	Experimental study on the width and pressure effect on the horizontal flame spread of insulation material. International Journal of Thermal Sciences, 2017, 114, 114-122.	2.6	27

#	Article	IF	Citations
127	Precise in-situ and ex-situ study on thermal behavior of LiNi1/3Co1/3Mn1/3O2/graphite coin cell: From part to the whole cell. Journal of Energy Chemistry, 2021, 54, 332-341.	7.1	27
128	The thermal runaway analysis on LiFePO4 electrical energy storage packs with different venting areas and void volumes. Applied Energy, 2022, 313, 118767.	5.1	27
129	Thermal stability of LiPF6/EC + DMC + EMC electrolyte for lithium ion batteries. Rare Metals, 2006, 25, 94-99.	3.6	26
130	C80 Calorimeter Studies of the Thermal Behavior of LiPF6 Solutions. Journal of Solution Chemistry, 2006, 35, 179-189.	0.6	26
131	Effect of bend on premixed flame dynamics in a closed duct. International Journal of Heat and Mass Transfer, 2015, 88, 297-305.	2.5	26
132	Effect of inorganic additive flame retardant on fire hazard of polyurethane exterior insulation material. Journal of Thermal Analysis and Calorimetry, 2019, 135, 2857-2868.	2.0	26
133	Full-Scale Experimental Study on the Combustion Behavior of Lithium Ion Battery Pack Used for Electric Vehicle. Fire Technology, 2020, 56, 2545-2564.	1.5	26
134	Transition-metal redox evolution and its effect on thermal stability of LiNi Co Mn O2 based on synchrotron soft X-ray absorption spectroscopy. Journal of Energy Chemistry, 2021, 59, 446-454.	7.1	26
135	Study on the kinetics properties of lithium hexafluorophosphate thermal decomposition reaction. Solid State Ionics, 2006, 177, 137-140.	1.3	25
136	A stochastic analysis of glass crack initiation under thermal loading. Applied Thermal Engineering, 2014, 67, 447-457.	3.0	25
137	A Thermal Degradation Study of Insulation Materials Extruded Polystyrene. Procedia Engineering, 2014, 71, 622-628.	1.2	25
138	Thermal Runaway Behavior of Lithium Iron Phosphate Battery During Penetration. Fire Technology, 2020, 56, 2405-2426.	1.5	25
139	Effect of metal wire mesh on premixed H2/air flame quenching behaviors in a closed tube. Chemical Engineering Research and Design, 2021, 146, 770-778.	2.7	25
140	Design of ultrasensitive gas sensor based on self-assembled Pd-SnO2/rGO porous ternary nanocomposites for ppb-level hydrogen. Sensors and Actuators B: Chemical, 2022, 369, 132280.	4.0	25
141	Experimental investigation on shock waves generated by pressurized gas release through a tube. Journal of Loss Prevention in the Process Industries, 2015, 36, 39-44.	1.7	24
142	Effect of single-layer wire mesh on premixed methane/air flame dynamics in a closed pipe. International Journal of Hydrogen Energy, 2020, 45, 32664-32675.	3.8	24
143	Numerical study on the mechanism of spontaneous ignition of high-pressure hydrogen during its sudden release into a tube. Safety Science, 2020, 129, 104807.	2.6	24
144	Enhancing the safety of lithium ion batteries by 4-isopropyl phenyl diphenyl phosphate. Materials Letters, 2007, 61, 3338-3340.	1.3	23

#	Article	IF	CITATIONS
145	Cresyl diphenyl phosphate effect on the thermal stabilities and electrochemical performances of electrodes in lithium ion battery. Journal of Power Sources, 2011, 196, 5960-5965.	4.0	23
146	Risk of Largeâ€Scale Evacuation Based on the Effectiveness of Rescue Strategies Under Different Crowd Densities. Risk Analysis, 2013, 33, 1553-1563.	1.5	23
147	Experimental study of shock wave propagation and its influence on the spontaneous ignition during high-pressure hydrogen release through a tube. International Journal of Hydrogen Energy, 2019, 44, 22598-22607.	3.8	23
148	Experimental study of methane addition effect on shock wave propagation, self-ignition and flame development during high-pressure hydrogen sudden discharge from a tube. Fuel, 2020, 277, 118217.	3.4	23
149	Downward flame spread over extruded polystyrene. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1091-1103.	2.0	22
150	Experimental study of the effect of typical halides on pyrolysis of ammonium nitrate using model reconstruction. Journal of Hazardous Materials, 2020, 384, 121297.	6.5	22
151	The effect of mass ratio of electrolyte and electrodes on the thermal stabilities of electrodes used in lithium ion battery. Thermochimica Acta, 2011, 517, 16-23.	1.2	21
152	Study on spontaneous combustion risk of cotton using a micro-calorimeter technique. Industrial Crops and Products, 2013, 50, 383-390.	2.5	21
153	Pre-Evacuation Human Reactions in Fires: An Attribution Analysis Considering Psychological Process. Procedia Engineering, 2013, 52, 290-296.	1.2	21
154	Development of a dynamic model for crack propagation in glazing system under thermal loading. Fire Safety Journal, 2014, 63, 113-124.	1.4	21
155	Experimental study of horizontal flame spread over rigid polyurethane foam on a plateau: effects of sample width and ambient pressure. Fire and Materials, 2015, 39, 127-138.	0.9	20
156	Effects of altitude and sample orientation on heat transfer for flame spread over polystyrene foams. Journal of Thermal Analysis and Calorimetry, 2015, 121, 641-650.	2.0	20
157	Experimental study of altitude and orientation effects on heat transfer over polystyrene insulation material. Journal of Thermal Analysis and Calorimetry, 2015, 122, 281-293.	2.0	20
158	Experimental study on shock waves, spontaneous ignition, and flame propagation produced by pressurized hydrogen release through tubes with varying obstacle location. Fuel, 2021, 290, 120093.	3.4	20
159	Experimental study of spontaneous ignition and non-premixed turbulent combustion behavior following pressurized hydrogen release through a tube with local enlargement. Journal of Loss Prevention in the Process Industries, 2017, 49, 814-821.	1.7	19
160	An experimental study of the effect of 2.5% methane addition on self-ignition and flame propagation during high-pressure hydrogen release through a tube. International Journal of Hydrogen Energy, 2020, 45, 3381-3390.	3.8	19
161	Influence of fire location on the thermal performance of glass façades. Applied Thermal Engineering, 2016, 106, 438-442.	3.0	18
162	Experimental study of spontaneous ignition induced by sudden hydrogen release through tubes with different shaped cross-sections. International Journal of Hydrogen Energy, 2019, 44, 23821-23831.	3.8	18

#	Article	IF	CITATIONS
163	Characteristics of flame spread over the surface of charring solid combustibles at high altitude. Science Bulletin, 2009, 54, 1957-1962.	4.3	17
164	Comparison of the thermal decomposition kinetics for charged LiMn2O4 by TG and C80 methods. Journal of Alloys and Compounds, 2009, 468, 477-481.	2.8	17
165	Horizontal Flame Spread Characteristics of Rigid Polyurethane and Molded Polystyrene Foams Under Externally Applied Radiation at Two Different Altitudes. Fire Technology, 2015, 51, 1195-1216.	1.5	17
166	The effect of glass panel dimension on the fire response of glass façades. Construction and Building Materials, 2018, 181, 588-597.	3.2	17
167	Simulation study on the effect of pre-evacuation time and exit width on evacuation. Science Bulletin, 2006, 51, 1381-1388.	1.7	16
168	Combustion Behaviors and Flame Structure of Methane/Coal Dust Hybrid in a Vertical Rectangle Chamber. Combustion Science and Technology, 2008, 180, 1518-1528.	1.2	16
169	The deceleration mechanism and the critical extinction angle of downward flame spread over inclined cellulosic solids. Applied Thermal Engineering, 2017, 124, 185-190.	3.0	16
170	Comprehensive Analysis on Dynamic Heat Generation of LiNi _{1/3} Co _{1/3} Coin Cell under Overcharge. Journal of the Electrochemical Society, 2019, 166, A3369-A3376.	1.3	16
171	Numerical study on the nano-droplets formation process from superheated steam condensation flow effected by nozzle convergent profile. International Communications in Heat and Mass Transfer, 2019, 104, 109-117.	2.9	16
172	Threeâ€dimensional layered electrochemicalâ€thermal model for a lithiumâ€ion pouch cell. International Journal of Energy Research, 2020, 44, 8919-8935.	2.2	16
173	Effects of altitude and inclination on the flame structure over the insulation material PS based on heat and mass transfer. International Journal of Heat and Mass Transfer, 2015, 90, 1046-1055.	2.5	15
174	Experimental study on fire risk of buildings' U-shaped exterior wall on flame propagation of insulation material on plain and plateau. Journal of Fire Sciences, 2015, 33, 358-373.	0.9	15
175	Flame Spread on Inclined Wood Surfaces: Influence of External Heat Flux and Ambient Oxygen Concentration. Combustion Science and Technology, 2018, 190, 97-113.	1.2	15
176	Spontaneous combustion identification of stored wet cotton using a C80 calorimeter. Industrial Crops and Products, 2008, 28, 268-272.	2.5	14
177	Flame propagation characteristics and flame structures of zirconium particle cloud in a small-scale chamber. Science Bulletin, 2010, 55, 3954-3959.	1.7	14
178	Effects of fixing point positions on thermal response of four point-supported glass façades. Construction and Building Materials, 2014, 73, 235-246.	3.2	14
179	Experimental study on thermal hazard of tributyl phosphate-nitric acid mixtures using micro calorimeter technique. Journal of Hazardous Materials, 2016, 314, 230-236.	6.5	14
180	Thermal performance of exposed framing glass façades in fire. Materials and Structures/Materiaux Et Constructions, 2016, 49, 2961-2970.	1.3	14

#	Article	IF	CITATIONS
181	Experimental and Numerical Study of Window Glass Breakage with Varying Shaded Widths under Thermal Loading. Fire Technology, 2017, 53, 43-64.	1.5	14
182	Dynamic Heat Generation of LiNi0.5Co0.2Mn0.3O2 Half Cell Under Cycling Based on an In Situ Micro-calorimetry. Fire Technology, 2020, 56, 2387-2404.	1.5	14
183	Thermal runaway propagation in large format lithium ion battery modules under inclined ceilings. Journal of Energy Storage, 2022, 51, 104477.	3.9	14
184	Effects of sample width on flame spread over horizontal charring solid surfaces on a plateau. Science Bulletin, 2011, 56, 919-924.	1.7	13
185	Sensitivity analysis of influencing factors on glass façade breakage in fire. Fire Safety Journal, 2018, 98, 38-47.	1.4	13
186	Effect of ignition position on premixed hydrogen-air flame quenching behaviors under action of metal wire mesh. Fuel, 2021, 289, 119750.	3.4	13
187	Microstructure of premixed propane/air flame in the transition from laminar to turbulent combustion. Science Bulletin, 2007, 52, 685-691.	1.7	12
188	Simulating the Thermal Response of Glass Under Various Shading Conditions in a Fire. Procedia Engineering, 2013, 62, 702-709.	1.2	12
189	A Multi-Component Additive to Improve the Thermal Stability of Li(Ni1/3Co1/3Mn1/3)O2-Based Lithium Ion Batteries. Energies, 2016, 9, 424.	1.6	12
190	Investigation of the thermal response and breakage mechanism of point-supported glass facade under wind load. Construction and Building Materials, 2018, 186, 635-643.	3.2	12
191	Combustion Behaviour of Fe2O3-coated Zirconium Particles in Air. Energy Procedia, 2015, 66, 269-272.	1.8	11
192	Experimental study on the effect of storage conditions on thermal stability of nitrocellulose. Applied Thermal Engineering, 2020, 180, 115871.	3.0	11
193	Investigation of the thermal performance in lithium-ion cells during polyformaldehyde nail penetration. Journal of Thermal Analysis and Calorimetry, 2021, 145, 3255-3268.	2.0	11
194	Upward Flame Spread Over an Array of Discrete Thermally-Thin PMMA Plates. Fire Technology, 2021, 57, 1381-1399.	1.5	11
195	Frame constraint effect on the window glass crack behavior exposed to a fire. Engineering Fracture Mechanics, 2013, 108, 109-119.	2.0	10
196	Thermal Analysis of Vertical Upward Flame Spread and Dripping Behaviors of Polystyrene Foams at Different Altitudes. Journal of Macromolecular Science - Physics, 2017, 56, 517-531.	0.4	10
197	A collaborative emergency decision making approach based on BWM and TODIM under interval 2-tuple linguistic environment. International Journal of Machine Learning and Cybernetics, 2022, 13, 383-405.	2.3	10
198	Dimethyl sulfite as an additive for lithium bis(oxalate)borate/ \hat{l}^3 -Butyrolacton electrolyte to improve the performance of Li-ion battery. Journal of Electroanalytical Chemistry, 2014, 731, 119-127.	1.9	9

#	Article	IF	CITATIONS
199	Randomness in the evacuation route selection of large-scale crowds under emergencies. Applied Mathematical Modelling, 2015, 39, 5693-5706.	2.2	9
200	Flame propagation characteristics and combustion mechanism of FeOOH-coated zirconium particles. Journal of Thermal Analysis and Calorimetry, 2016, 126, 649-657.	2.0	9
201	Theoretical Kinetic and Mechanistic Studies on the Reactions of CF3CBrCH2 (2-BTP) with OH and H Radicals. Molecules, 2017, 22, 2140.	1.7	9
202	Impact of Intersecting Angles on Evacuation Efficiency of Pedestrian Flows in High Volume: A Case Study in Metro Station. KSCE Journal of Civil Engineering, 2019, 23, 2324-2332.	0.9	9
203	Numerical simulation on the spontaneous ignition of high-pressure hydrogen release through a tube at different burst pressures. International Journal of Hydrogen Energy, 2022, 47, 10431-10440.	3.8	9
204	Effects of CO addition on shock wave propagation, self-ignition, and flame development of high-pressure hydrogen release into air. International Journal of Hydrogen Energy, 2022, 47, 14714-14724.	3.8	9
205	Experimental and LES investigation of flame propagation in a hydrogen/air mixture in a combustion vessel. Science Bulletin, 2014, 59, 2496-2504.	1.7	8
206	Thermal Breakage of Tempered Glass Façade with Down-Flowing Water Film Under Different Heating Rates. Fire Technology, 2016, 52, 563-580.	1.5	8
207	The Breakage of Float Glass with Four-Edge Shading Under the Combined Effect of Wind Loading and Thermal Loading. Fire Technology, 2017, 53, 1233-1248.	1.5	8
208	Conformational inversion-topomerization mechanism of ethylcyclohexyl isomers and its role in combustion kinetics. Proceedings of the Combustion Institute, 2017, 36, 237-244.	2.4	8
209	Electrochemical performance and thermal stability of lithium ion batteries after immersion. Corrosion Science, 2021, 184, 109384.	3.0	8
210	Mechanism of self-ignition and flame propagation during high-pressure hydrogen release through a rectangular tube. Chemical Engineering Research and Design, 2022, 164, 283-290.	2.7	8
211	Improved thermal stability of graphite electrodes in lithium-ion batteries using 4-isopropyl phenyl diphenyl phosphate as an additive. Journal of Applied Electrochemistry, 2009, 39, 1105-1110.	1.5	7
212	An Experimental and Numerical Study of Imbalanced Door Choice During an Announced Evacuation Drill. Fire Technology, 2016, 52, 801-815.	1.5	7
213	Large scale experimental study on the fire hazard of buildings' U-shape façade wall geometry. Journal of Civil Engineering and Management, 2017, 23, 455-463.	1.9	7
214	Effects of nitrogen addition on the shock-induced ignition of high-pressure hydrogen release through a rectangular tube of 400Âmm in length. Fuel, 2022, 308, 122016.	3.4	7
215	Self-organized criticality judgment and extreme statistics analysis of major urban fires. Science Bulletin, 2011, 56, 567-572.	1.7	6
216	Optimization of Ventilating Energy Distribution for Controlling Coal Spontaneous Combustion of Sealed Panel in Underground Coal Mines. Procedia Engineering, 2013, 62, 972-979.	1.2	6

#	Article	IF	Citations
217	Thermal breakage and fallout behaviors of non-tempered glass under the effect of water film. Journal of Fire Sciences, 2015, 33, 390-404.	0.9	6
218	Flame propagation through zirconium particles coated with different ratios of Fe 3 O 4. Fuel, 2015, 148, 231-237.	3.4	6
219	Comparative Study on Crack Initiation and Propagation of Glass under Thermal Loading. Materials, 2016, 9, 794.	1.3	6
220	Crack evolution process of window glass under radiant heating. Fire and Materials, 2017, 41, 1016-1026.	0.9	6
221	Conformational inversion-topomerization processes of ethylcyclohexane and 1,2-dimethylcyclohexane: A computational investigation. Tetrahedron, 2019, 75, 449-457.	1.0	6
222	Effects of copper oxide and sulfuric acid on the pyrolysis behavior of ammonium nitrate under thermal radiation experiments. Applied Thermal Engineering, 2020, 181, 116044.	3.0	6
223	Dynamics of premixed hydrogen-air flame propagation in the duct with pellets bed. International Journal of Hydrogen Energy, 2021, 46, 15780-15792.	3.8	6
224	Combustion characteristics of zirconium particles coated with ferrite nanoparticles. Powder Technology, 2021, 389, 145-154.	2.1	6
225	Study of point-supported glass breakage behavior with varying point-covered areas under thermal loading. International Journal of Thermal Sciences, 2018, 132, 65-75.	2.6	5
226	Experimental study on temperature field of upward flame spread over discrete polystyrene foam. Journal of Thermal Analysis and Calorimetry, 2018, 131, 2647-2656.	2.0	4
227	Experimental Study on Pyrolysis Kinetics and Thermal Stability of Li (Ni _{1/3} Co _{1/3} Mn _{1/3})O ₂ Cathode Material at Different State of Charge. Journal of the Electrochemical Society, 2021, 168, 020522.	1.3	3
228	Experimental study on the competing effect of ceramic pellets on premixed methane-air flame propagation in a duct. Journal of Loss Prevention in the Process Industries, 2021, 72, 104530.	1.7	3
229	Experimental Investigation on Glass Cracking for Wind Load Combined with Radiant Heating. , 2017, , 255-260.		3
230	Cause analysis of the fire and explosion of asphalt–salt mixture in a nuclear wastes processing plant. Fire Safety Journal, 2005, 40, 411-424.	1.4	2
231	Impact of conformational structures on primary decomposition of cis-1,2-dimethylcyclohexyl isomers: A theoretical study. Combustion and Flame, 2019, 205, 193-205.	2.8	2
232	Study on the explosion of run-away reaction triggered by a faint heat generation., 2001,, 853-866.		1
233	Combustion characteristics of <scp>PMMA</scp> sheets with different equivalent diameters in still air. Fire and Materials, 2022, 46, 780-788.	0.9	1
234	A dynamic interaction assessment method for disaster management based on extended DEMATEL. , 2022, 2, 1-10.		1

#	Article	IF	CITATIONS
235	The influence of bubble evolution on the early characteristics of the boiling liquid expanding vapor explosion., 2008,,.		0
236	Experimental study on microscopic evolving process of boiling overheat liquor in boiler under microcracking condition. , 2009, , .		0
237	Urban Fire Risk Evaluation Based on 2-tuple AHP—Taking the 8th Division with Shihezi City for Example. , 2019, , .		O
238	Effects of equivalent diameter on vertical PMMA combustion in natural convection environment. Fire and Materials, 2020, 44, 1064-1071.	0.9	0