## John Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/548508/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Resolving the Rules of Robustness and Resilience in Biology Across Scales. Integrative and Comparative Biology, 2022, 61, 2163-2179.                                                                                                           | 2.0 | 7         |
| 2  | Virus-like Particles: Measures and Biological Functions. Viruses, 2022, 14, 383.                                                                                                                                                               | 3.3 | 20        |
| 3  | Mathematical modeling of the lower urinary tract: A review. Neurourology and Urodynamics, 2022, 41, 1305-1315.                                                                                                                                 | 1.5 | 6         |
| 4  | Toward Molecular Cooperation by De Novo Peptides. Origins of Life and Evolution of Biospheres, 2021, 51, 71-82.                                                                                                                                | 1.9 | 7         |
| 5  | Patterns of virus growth across the diversity of life. Integrative Biology (United Kingdom), 2021, 13, 44-59.                                                                                                                                  | 1.3 | 7         |
| 6  | Kinetics of Asian and African Zika virus lineages over single ycle and multi ycle growth in culture:<br>Gene expression, cell killing, virus production, and mathematical modeling. Biotechnology and<br>Bioengineering, 2021, 118, 4231-4245. | 3.3 | 2         |
| 7  | Kinetic Modeling of Virus Growth in Cells. Microbiology and Molecular Biology Reviews, 2018, 82, .                                                                                                                                             | 6.6 | 49        |
| 8  | Trimetaphosphate Activates Prebiotic Peptide Synthesis across a Wide Range of Temperature and pH.<br>Origins of Life and Evolution of Biospheres, 2018, 48, 277-287.                                                                           | 1.9 | 19        |
| 9  | Differential Disruption of Nucleocytoplasmic Trafficking Pathways by Rhinovirus 2A Proteases.<br>Journal of Virology, 2017, 91, .                                                                                                              | 3.4 | 30        |
| 10 | Evolvix BEST Names for semantic reproducibility across code2brain interfaces. Annals of the New<br>York Academy of Sciences, 2017, 1387, 124-144.                                                                                              | 3.8 | 1         |
| 11 | Quantitative profiling of innate immune activation by viral infection in single cells. Integrative<br>Biology (United Kingdom), 2017, 9, 782-791.                                                                                              | 1.3 | 11        |
| 12 | Effects of Trimetaphosphate on Abiotic Formation and Hydrolysis of Peptides. Life, 2017, 7, 50.                                                                                                                                                | 2.4 | 14        |
| 13 | Inhibition of infection spread by co-transmitted defective interfering particles. PLoS ONE, 2017, 12, e0184029.                                                                                                                                | 2.5 | 19        |
| 14 | Temperature gradients drive radial fluid flow in petri dishes and multiwell plates. AICHE Journal, 2016, 62, 2227-2233.                                                                                                                        | 3.6 | 12        |
| 15 | Rapid induction and persistence of paracrine-induced cellular antiviral states arrest viral infection spread in A549 cells. Virology, 2016, 496, 59-66.                                                                                        | 2.4 | 21        |
| 16 | Spatial-Temporal Patterns of Viral Amplification and Interference Initiated by a Single Infected Cell.<br>Journal of Virology, 2016, 90, 7552-7566.                                                                                            | 3.4 | 28        |
| 17 | Neucode Labels for Multiplexed, Absolute Protein Quantification. Analytical Chemistry, 2016, 88, 3295-3303.                                                                                                                                    | 6.5 | 23        |
| 18 | High-Throughput Single-Cell Kinetics of Virus Infections in the Presence of Defective Interfering<br>Particles. Journal of Virology, 2016, 90, 1599-1612.                                                                                      | 3.4 | 40        |

John Yin

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Tools for Single-Cell Kinetic Analysis of Virus-Host Interactions. PLoS ONE, 2016, 11, e0145081.                                                                                                         | 2.5 | 35        |
| 20 | Genome rearrangement affects RNA virus adaptability on prostate cancer cells. Frontiers in Genetics, 2015, 6, 121.                                                                                       | 2.3 | 9         |
| 21 | Robust kinetics of an RNA virus: Transcription rates are set by genome levels. Biotechnology and<br>Bioengineering, 2015, 112, 1655-1662.                                                                | 3.3 | 14        |
| 22 | Characterization of vesicular stomatitis virus populations by tunable resistive pulse sensing. Journal of Virological Methods, 2015, 218, 71-76.                                                         | 2.1 | 28        |
| 23 | Kinetic Differences and Synergistic Antiviral Effects Between Type I and Type III Interferon Signaling<br>Indicate Pathway Independence. Journal of Interferon and Cytokine Research, 2015, 35, 734-747. | 1.2 | 31        |
| 24 | Sterol Carrier Protein 2, a Critical Host Factor for Dengue Virus Infection, Alters the Cholesterol<br>Distribution in Mosquito Aag2 Cells. Journal of Medical Entomology, 2015, 52, 1124-1134.          | 1.8 | 21        |
| 25 | Quantitative Characterization of Defective Virus Emergence by Deep Sequencing. Journal of Virology, 2014, 88, 2623-2632.                                                                                 | 3.4 | 29        |
| 26 | Visualizing infection spread: Dualâ€color fluorescent reporting of virus–host interactions.<br>Biotechnology and Bioengineering, 2014, 111, 1200-1209.                                                   | 3.3 | 20        |
| 27 | A quantitative infection assay for human type I, II, and III interferon antiviral activities. Virology<br>Journal, 2013, 10, 224.                                                                        | 3.4 | 21        |
| 28 | A quantitative comet infection assay for influenza virus. Journal of Virological Methods, 2012, 179,<br>351-358.                                                                                         | 2.1 | 10        |
| 29 | Kinetics of virus production from single cells. Virology, 2012, 424, 11-17.                                                                                                                              | 2.4 | 77        |
| 30 | Population dynamics of an RNA virus and its defective interfering particles in passage cultures.<br>Virology Journal, 2010, 7, 257.                                                                      | 3.4 | 62        |
| 31 | Computational Fitness Landscape for All Gene-Order Permutations of an RNA Virus. PLoS<br>Computational Biology, 2009, 5, e1000283.                                                                       | 3.2 | 8         |
| 32 | Growth of an RNA virus in single cells reveals a broad fitness distribution. Virology, 2009, 385, 39-46.                                                                                                 | 2.4 | 78        |
| 33 | Infection on a chip: a microscale platform for simple and sensitive cell-based virus assays. Biomedical Microdevices, 2009, 11, 565-570.                                                                 | 2.8 | 25        |
| 34 | Stochastic Kinetic Modeling of Vesicular Stomatitis Virus Intracellular Growth. Bulletin of<br>Mathematical Biology, 2009, 71, 1671-1692.                                                                | 1.9 | 31        |
| 35 | Dynamics of virus spread in the presence of fluid flow. Integrative Biology (United Kingdom), 2009, 1, 664.                                                                                              | 1.3 | 12        |
| 36 | Multiple-hit inhibition of infection by defective interfering particles. Journal of General Virology, 2009, 90, 888-899.                                                                                 | 2.9 | 40        |

**J**οην Υίν

| #  | Article                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Image-Guided Modeling of Virus Growth and Spread. Bulletin of Mathematical Biology, 2008, 70, 1730-1748.                                                                  | 1.9 | 33        |
| 38 | Implications of decoupling the intracellular and extracellular levels in multiâ€level models of virus growth. Biotechnology and Bioengineering, 2008, 101, 811-820.       | 3.3 | 11        |
| 39 | Chemical engineering and virology: Challenges and opportunities at the interface. AICHE Journal, 2007, 53, 2202-2209.                                                     | 3.6 | 18        |
| 40 | A quantitative comet assay: Imaging and analysis of virus plaques formed with a liquid overlay.<br>Journal of Virological Methods, 2007, 139, 100-102.                    | 2.1 | 17        |
| 41 | Formation of peptides in the dry state. Peptides, 2006, 27, 607-610.                                                                                                      | 2.4 | 22        |
| 42 | Dynamic tradeoffs in the raft-mediated entry of human immunodeficiency virus type 1 into cells.<br>Biotechnology and Bioengineering, 2006, 93, 246-257.                   | 3.3 | 6         |
| 43 | Spatial patterns of protein expression in focal infections of human cytomegalovirus. Biotechnology and Bioengineering, 2006, 93, 1029-1039.                               | 3.3 | 5         |
| 44 | Model-Based Design of Growth-Attenuated Viruses. PLoS Computational Biology, 2006, 2, e116.                                                                               | 3.2 | 32        |
| 45 | Dynamics of viral infections: incorporating both the intracellular and extracellular levels.<br>Computers and Chemical Engineering, 2005, 29, 675-686.                    | 3.8 | 34        |
| 46 | Arrested spread of vesicular stomatitis virus infections in vitro depends on interferon-mediated antiviral activity. Biotechnology and Bioengineering, 2005, 90, 793-804. | 3.3 | 37        |
| 47 | In silico mutagenesis of RNA splicing in HIV-1. Biotechnology and Bioengineering, 2005, 91, 877-893.                                                                      | 3.3 | 3         |
| 48 | Robust Growth of Human Immunodeficiency Virus Type 1 (HIV-1). Biophysical Journal, 2005, 89, 2210-2221.                                                                   | 0.5 | 23        |
| 49 | Quantitative Analysis of a Parasitic Antiviral Strategy. Antimicrobial Agents and Chemotherapy, 2004, 48, 1017-1020.                                                      | 3.2 | 14        |
| 50 | Energy-efficient growth of phage Q? inEscherichia coli. Biotechnology and Bioengineering, 2004, 88, 148-156.                                                              | 3.3 | 27        |
| 51 | Propagation of viruses on micropatterned host cells. Biotechnology and Bioengineering, 2003, 81, 719-725.                                                                 | 3.3 | 19        |
| 52 | Effects of Escherichia coli Physiology on Growth of Phage T7 In Vivo and In Silico. Journal of<br>Bacteriology, 2002, 184, 1888-1894.                                     | 2.2 | 146       |
| 53 | Dependence of Epistasis on Environment and Mutation Severity as Revealed by <i>in Silico</i> Mutagenesis of Phage T7. Genetics, 2002, 160, 1273-1281.                     | 2.9 | 66        |
| 54 | Quantifying Viral Propagation in Vitro: Toward a Method for Characterization of Complex<br>Phenotypes. Biotechnology Progress, 2001, 17, 1156-1165.                       | 2.6 | 21        |

John Yin

| #  | Article                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Imaging the propagation of viruses. , 2000, 52, 438-442.                                                                     |      | 14        |
| 56 | Patterns of Regulation from mRNA and Protein Time Series. Metabolic Engineering, 2000, 2, 210-217.                           | 7.0  | 27        |
| 57 | Toward Antiviral Strategies That Resist Viral Escape. Antimicrobial Agents and Chemotherapy, 2000, 44, 1097-1099.            | 3.2  | 26        |
| 58 | SIMULATING THE GROWTH OF VIRUSES. , 2000, , 532-43.                                                                          |      | 4         |
| 59 | Amplification and Spread of Viruses in a Growing Plaque. Journal of Theoretical Biology, 1999, 200, 365-373.                 | 1.7  | 65        |
| 60 | Quantitative Intracellular Kinetics of HIV Type 1. AIDS Research and Human Retroviruses, 1999, 15, 273-283.                  | 1.1  | 101       |
| 61 | Subsurface oxidation of polyethylene. , 1998, 42, 523-529.                                                                   |      | 45        |
| 62 | Subsurface oxidation of polyethylene. Journal of Biomedical Materials Research Part B, 1998, 42, 523-529.                    | 3.1  | 1         |
| 63 | Intracellular kinetics of a growing virus: A genetically structured simulation for bacteriophage T7. ,<br>1997, 55, 375-389. |      | 94        |
| 64 | Antiserum inhibition of propagating viruses. , 1997, 55, 542-546.                                                            |      | 5         |
| 65 | Metal recognition by in-vitro selection. Biotechnology and Bioengineering, 1995, 45, 458-462.                                | 3.3  | 4         |
| 66 | Whole-virus Vaccine Development by Continuous Culture on a Complementing Host. Nature Biotechnology, 1995, 13, 583-586.      | 17.5 | 6         |
| 67 | A quantifiable phenotype of viral propagation. Biochemical and Biophysical Research Communications, 1991, 174, 1009-1014.    | 2.1  | 46        |