Geert Molenberghs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5484247/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The validation of surrogate endpoints in meta-analyses of randomized experiments. Biostatistics, 2000, 1, 49-67.	1.5	504
2	Linear Mixed Models for Longitudinal Data. Springer Series in Statistics, 2000, , .	0.9	451
3	Linear Mixed Models in Practice. Lecture Notes in Statistics, 1997, , .	0.2	400
4	Criteria for the Validation of Surrogate Endpoints in Randomized Experiments. Biometrics, 1998, 54, 1014.	1.4	364
5	Analyzing incomplete longitudinal clinical trial data. Biostatistics, 2004, 5, 445-464.	1.5	343
6	Missing data methods in longitudinal studies: a review. Test, 2009, 18, 1-43.	1.1	340
7	Marginal Modeling of Correlated Ordinal Data Using a Multivariate Plackett Distribution. Journal of the American Statistical Association, 1994, 89, 633-644.	3.1	250
8	Assessing and interpreting treatment effects in longitudinal clinical trials with missing data. Biological Psychiatry, 2003, 53, 754-760.	1.3	212
9	The Use of Score Tests for Inference on Variance Components. Biometrics, 2003, 59, 254-262.	1.4	191
10	Analyzing incomplete longitudinal clinical trial data. Biostatistics, 2004, 5, 445-464.	1.5	187
11	The analysis of longitudinal ordinal data with nonrandom drop-out. Biometrika, 1997, 84, 33-44.	2.4	170
12	Every Missingness not at Random Model Has a Missingness at Random Counterpart with Equal Fit. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2008, 70, 371-388.	2.2	166
13	Likelihood Ratio, Score, and Wald Tests in a Constrained Parameter Space. American Statistician, 2007, 61, 22-27.	1.6	163
14	Sensitivity Analysis for Nonrandom Dropout: A Local Influence Approach. Biometrics, 2001, 57, 7-14.	1.4	161
15	Direct likelihood analysis versus simple forms of imputation for missing data in randomized clinical trials. Clinical Trials, 2005, 2, 379-386.	1.6	134
16	Strategies to fit pattern-mixture models. Biostatistics, 2002, 3, 245-265.	1.5	128
17	Assessing Response Profiles from Incomplete Longitudinal Clinical Trial Data Under Regulatory Considerations. Journal of Biopharmaceutical Statistics, 2003, 13, 179-190.	0.8	124
18	A Family of Generalized Linear Models for Repeated Measures with Normal and Conjugate Random Effects. Statistical Science, 2010, 25, .	2.8	121

#	Article	IF	CITATIONS
19	Likelihood based frequentist inference when data are missing at random. Statistical Science, 1998, 13, 236.	2.8	118
20	Monotone missing data and patternâ€mixture models. Statistica Neerlandica, 1998, 52, 153-161.	1.6	114
21	Choice of the primary analysis in longitudinal clinical trials. Pharmaceutical Statistics, 2004, 3, 161-169.	1.3	110
22	Statistical challenges in the evaluation of surrogate endpoints in randomized trials. Contemporary Clinical Trials, 2002, 23, 607-625.	1.9	108
23	Shared parameter models under random effects misspecification. Biometrika, 2008, 95, 63-74.	2.4	107
24	An extended random-effects approach to modeling repeated, overdispersed count data. Lifetime Data Analysis, 2007, 13, 513-531.	0.9	104
25	An Application of Maximum Likelihood and Generalized Estimating Equations to the Analysis of Ordinal Data from a Longitudinal Study with Cases Missing at Random. Biometrics, 1994, 50, 945.	1.4	102
26	Transformation of non positive semidefinite correlation matrices. Communications in Statistics - Theory and Methods, 1993, 22, 965-984.	1.0	100
27	Statistical evaluation of surrogate endpoints with examples from cancer clinical trials. Biometrical Journal, 2016, 58, 104-132.	1.0	93
28	Internal mixing of rotating stars inferred from dipole gravity modes. Nature Astronomy, 2021, 5, 715-722.	10.1	91
29	Dynamic predictions with timeâ€dependent covariates in survival analysis using joint modeling and landmarking. Biometrical Journal, 2017, 59, 1261-1276.	1.0	88
30	Pseudolikelihood Modeling of Multivariate Outcomes in Developmental Toxicology. Journal of the American Statistical Association, 1999, 94, 734-745.	3.1	87
31	Applying Concepts of Generalizability Theory on Clinical Trial Data to Investigate Sources of Variation and Their Impact on Reliability. Biometrics, 2005, 61, 295-304.	1.4	85
32	Last Observation Carried Forward: A Crystal Ball?. Journal of Biopharmaceutical Statistics, 2009, 19, 872-888.	0.8	84
33	Evaluation of surrogate endpoints in randomized experiments with mixed discrete and continuous outcomes. Statistics in Medicine, 2001, 20, 3023-3038.	1.6	77
34	Random-effects models for multivariate repeated measures. Statistical Methods in Medical Research, 2007, 16, 387-397.	1.5	77
35	The Effective Sample Size and an Alternative Small-Sample Degrees-of-Freedom Method. American Statistician, 2009, 63, 389-399.	1.6	75
36	Sensitivity analysis for incomplete contingency tables: the Slovenian plebiscite case. Journal of the Royal Statistical Society Series C: Applied Statistics, 2001, 50, 15-29.	1.0	74

#	Article	IF	CITATIONS
37	The validation of surrogate end points by using data from randomized clinical trials: a case-study in advanced colorectal cancer. Journal of the Royal Statistical Society Series A: Statistics in Society, 2004, 167, 103-124.	1.1	69
38	Forward Asteroseismic Modeling of Stars with a Convective Core from Gravity-mode Oscillations: Parameter Estimation and Stellar Model Selection. Astrophysical Journal, Supplement Series, 2018, 237, 15.	7.7	69
39	A pairwise likelihood approach to estimation in multilevel probit models. Computational Statistics and Data Analysis, 2004, 44, 649-667.	1.2	67
40	Parametric models for incomplete continuous and categorical longitudinal data. Statistical Methods in Medical Research, 1999, 8, 51-83.	1.5	66
41	A simulation study comparing weighted estimating equations with multiple imputation based estimating equations for longitudinal binary data. Computational Statistics and Data Analysis, 2008, 52, 1533-1548.	1.2	62
42	Marginal modelling of multivariate categorical data. , 1999, 18, 2237-2255.		61
43	Selection models and pattern-mixture models to analyse longitudinal quality of life data subject to drop-out. Statistics in Medicine, 2002, 21, 1023-1041.	1.6	60
44	A Latent-Class Mixture Model for Incomplete Longitudinal Gaussian Data. Biometrics, 2008, 64, 96-105.	1.4	59
45	THE SURFACE NITROGEN ABUNDANCE OF A MASSIVE STAR IN RELATION TO ITS OSCILLATIONS, ROTATION, AND MAGNETIC FIELD. Astrophysical Journal, 2014, 781, 88.	4.5	59
46	Marginal Modeling of Correlated Ordinal Data Using a Multivariate Plackett Distribution. Journal of the American Statistical Association, 1994, 89, 633.	3.1	59
47	Applying linear mixed models to estimate reliability in clinical trial data with repeated measurements. Contemporary Clinical Trials, 2004, 25, 13-30.	1.9	57
48	Surrogate Marker Evaluation from an Information Theory Perspective. Biometrics, 2007, 63, 180-186.	1.4	57
49	The nature of sensitivity in monotone missing not at random models. Computational Statistics and Data Analysis, 2006, 50, 830-858.	1.2	53
50	The gradient function as an exploratory goodness-of-fit assessment of the random-effects distribution in mixed models. Biostatistics, 2013, 14, 477-490.	1.5	52
51	Sensitivity analysis for incomplete categorical data. Statistical Modelling, 2001, 1, 31-48.	1.1	51
52	A unifying approach for surrogate marker validation based on Prentice's criteria. Statistics in Medicine, 2006, 25, 205-221.	1.6	51
53	Prentice's Approach and the Meta-Analytic Paradigm: A Reflection on the Role of Statistics in the Evaluation of Surrogate Endpoints. Biometrics, 2004, 60, 724-728.	1.4	49
54	A perspective on surrogate endpoints in controlled clinical trials. Statistical Methods in Medical Research 2004, 13, 177-206	1.5	49

#	Article	IF	CITATIONS
55	Multipleâ€Imputationâ€Based Residuals and Diagnostic Plots for Joint Models of Longitudinal and Survival Outcomes. Biometrics, 2010, 66, 20-29.	1.4	47
56	A Multiple-Imputation-Based Approach to Sensitivity Analyses and Effectiveness Assessments in Longitudinal Clinical Trials. Journal of Biopharmaceutical Statistics, 2014, 24, 211-228.	0.8	46
57	Random Effects Models for Longitudinal Data. , 2010, , 37-96.		45
58	The Shape of Correlation Matrices. American Statistician, 1994, 48, 276-279.	1.6	44
59	Validation of Surrogate Endpoints in Multiple Randomized Clinical Trials with Discrete Outcomes. Biometrical Journal, 2002, 44, 921-935.	1.0	44
60	Evidence for a substantial role of sharing of injecting paraphernalia other than syringes/needles to the spread of hepatitis C among injecting drug users. Journal of Viral Hepatitis, 2006, 13, 560-570.	2.0	43
61	Analyzing Incomplete Discrete Longitudinal Clinical Trial Data. Statistical Science, 2006, 21, 52.	2.8	43
62	On the Relationship between the Causal-Inference and Meta-Analytic Paradigms for the Validation of Surrogate Endpoints. Biometrics, 2015, 71, 15-24.	1.4	41
63	An exponential family model for clustered multivariate binary data. Environmetrics, 1999, 10, 279-300.	1.4	40
64	Simplified hierarchical linear models for the evaluation of surrogate endpoints. Journal of Statistical Computation and Simulation, 2003, 73, 643-658.	1.2	40
65	Nonrandom Missingness in Categorical Data: Strengths and Limitations. American Statistician, 1999, 53, 110-118.	1.6	39
66	Modeling actor and partner effects in dyadic data when outcomes are categorical Psychological Methods, 2013, 18, 220-236.	3.5	39
67	A Local Influence Approach Applied to Binary Data from a Psychiatric Study. Biometrics, 2003, 59, 410-419.	1.4	38
68	Estimating precision, repeatability, and reproducibility from Gaussian and non- Gaussian data: a mixed models approach. Journal of Applied Statistics, 2010, 37, 1729-1747.	1.3	38
69	Choosing estimands in clinical trials with missing data. Pharmaceutical Statistics, 2017, 16, 29-36.	1.3	38
70	Remote Monitoring of Hypertension Diseases in Pregnancy: A Pilot Study. JMIR MHealth and UHealth, 2017, 5, e25.	3.7	37
71	Doubly Robust and Multiple-Imputation-Based Generalized Estimating Equations. Journal of Biopharmaceutical Statistics, 2011, 21, 202-225.	0.8	34
72	GEE for longitudinal ordinal data: Comparing R-geepack, R-multgee, R-repolr, SAS-GENMOD, SPSS-GENLIN. Computational Statistics and Data Analysis, 2014, 77, 70-83.	1.2	34

#	Article	IF	CITATIONS
73	Influence analysis to assess sensitivity of the dropout process. Computational Statistics and Data Analysis, 2001, 37, 93-113.	1.2	32
74	Generalized shared-parameter models and missingness at random. Statistical Modelling, 2011, 11, 279-310.	1.1	31
75	Marginalized multilevel hurdle and zeroâ€inflated models for overdispersed and correlated count data with excess zeros. Statistics in Medicine, 2014, 33, 4402-4419.	1.6	30
76	Title is missing!. Plant Ecology, 2002, 163, 123-134.	1.6	29
77	Type I error rates from likelihood-based repeated measures analyses of incomplete longitudinal data. Pharmaceutical Statistics, 2004, 3, 171-186.	1.3	29
78	A Sensitivity Analysis for Sharedâ€Parameter Models for Incomplete Longitudinal Outcomes. Biometrical Journal, 2010, 52, 111-125.	1.0	29
79	The Milk Protein Trial: Influence Analysis of the Dropout Process. Biometrical Journal, 2000, 42, 617-646.	1.0	28
80	Selection Models and Pattern-Mixture Models for Incomplete Data with Covariates. Biometrics, 1999, 55, 978-983.	1.4	27
81	Validation of Surrogate Markers in Multiple Randomized Clinical Trials with Repeated Measurements: Canonical Correlation Approach. Biometrics, 2004, 60, 845-853.	1.4	27
82	The COVID-19 epidemic, its mortality, and the role of non-pharmaceutical interventions. European Heart Journal: Acute Cardiovascular Care, 2020, 9, 204-208.	1.0	27
83	COVID-19 mortality, excess mortality, deaths per million and infection fatality ratio, Belgium, 9 March 2020 to 28 June 2020. Eurosurveillance, 2022, 27, .	7.0	26
84	Choice of units of analysis and modeling strategies in multilevel hierarchical models. Computational Statistics and Data Analysis, 2004, 47, 537-563.	1.2	25
85	A local influence approach to sensitivity analysis of incomplete longitudinal ordinal data. Statistical Modelling, 2001, 1, 125-142.	1.1	24
86	A local influence approach to sensitivity analysis of incomplete longitudinal ordinal data. Statistical Modelling, 2001, 1, 125-142.	1.1	24
87	Validation of a longitudinally measured surrogate marker for a time-to-event endpoint. Journal of Applied Statistics, 2003, 30, 235-247.	1.3	24
88	The Shape of Correlation Matrices. American Statistician, 1994, 48, 276.	1.6	23
89	An Exact Trend Test for Correlated Binary Data. Biometrics, 2001, 57, 941-948.	1.4	23
90	A generalized Poisson-gamma model for spatially overdispersed data. Spatial and Spatio-temporal Epidemiology, 2012, 3, 185-194.	1.7	23

#	Article	IF	CITATIONS
91	On random sample size, ignorability, ancillarity, completeness, separability, and degeneracy: Sequential trials, random sample sizes, and missing data. Statistical Methods in Medical Research, 2014, 23, 11-41.	1.5	23
92	Sensitivity analysis for incomplete categorical data. Statistical Modelling, 2001, 1, 31-48.	1.1	23
93	Protective estimation of longitudinal categorical data with nonrandom dropout. Communications in Statistics - Theory and Methods, 1997, 26, 65-94.	1.0	22
94	Simple Fitting Algorithms for Incomplete Categorical Data. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1997, 59, 401-414.	2.2	22
95	Bias in Estimating Association Parameters for Longitudinal Binary Responses with Dropâ€Outs. Biometrics, 2001, 57, 15-21.	1.4	22
96	INVESTIGATING THE CRITERION VALIDITY OF PSYCHIATRIC SYMPTOM SCALES USING SURROGATE MARKER VALIDATION METHODOLOGY. Journal of Biopharmaceutical Statistics, 2002, 12, 161-178.	0.8	22
97	Generalized pairwise comparison methods to analyze (non)prioritized composite endpoints. Statistics in Medicine, 2019, 38, 5641-5656.	1.6	22
98	Validation of Surrogate Markers in Multiple Randomized Clinical Trials with Repeated Measurements. Biometrical Journal, 2003, 45, 931-945.	1.0	21
99	Arbitrariness of models for augmented and coarse data, with emphasis on incomplete data and random effects models. Statistical Modelling, 2010, 10, 391-419.	1.1	21
100	Pseudo-likelihood methodology for partitioned large and complex samples. Statistics and Probability Letters, 2011, 81, 892-901.	0.7	21
101	Marginal correlation from an extended random-effects model for repeated and overdispersed counts. Journal of Applied Statistics, 2011, 38, 215-232.	1.3	21
102	A combined overdispersed and marginalized multilevel model. Computational Statistics and Data Analysis, 2012, 56, 1944-1951.	1.2	20
103	A zero-inflated overdispersed hierarchical Poisson model. Statistical Modelling, 2014, 14, 439-456.	1.1	20
104	Clinical and immunological control of experimental autoimmune encephalomyelitis by tolerogenic dendritic cells loaded with MOG-encoding mRNA. Journal of Neuroinflammation, 2019, 16, 167.	7.2	20
105	Information-theory based surrogate marker evaluation from several randomized clinical trials with continuous true and binary surrogate endpoints. Clinical Trials, 2007, 4, 587-597.	1.6	19
106	Estimating Reliability and Generalizability from Hierarchical Biomedical Data. Journal of Biopharmaceutical Statistics, 2007, 17, 595-627.	0.8	19
107	A note on a hierarchical interpretation for negative variance components. Statistical Modelling, 2011, 11, 389-408.	1.1	19
108	Strategies for handling missing data in longitudinal studies with questionnaires. Journal of Statistical Computation and Simulation, 2018, 88, 3415-3436.	1.2	19

#	Article	IF	CITATIONS
109	What Can Go Wrong With the Score Test?. American Statistician, 2007, 61, 289-290.	1.6	18
110	Evaluating time to cancer recurrence as a surrogate marker for survival from an information theory perspective. Statistical Methods in Medical Research, 2008, 17, 497-504.	1.5	18
111	A unified framework for the evaluation of surrogate endpoints in mental-health clinical trials. Statistical Methods in Medical Research, 2010, 19, 205-236.	1.5	18
112	Estimating negative variance components from Gaussian and non-Gaussian data: A mixed models approach. Computational Statistics and Data Analysis, 2011, 55, 1071-1085.	1.2	18
113	A note on the comparison of pseudo-likelihood and generalized estimating equations for marginally specified odds ratio models with exchangeable association structure. Journal of Statistical Computation and Simulation, 1998, 62, 45-71.	1.2	17
114	The meta-analytic framework for the evaluation of surrogate endpoints in clinical trials. Journal of Statistical Planning and Inference, 2008, 138, 432-449.	0.6	17
115	A Flexible Method to Measure Synchrony in Neuronal Firing. Journal of the American Statistical Association, 2008, 103, 149-161.	3.1	17
116	A combined beta and normal random-effects model for repeated, overdispersed binary and binomial data. Journal of Multivariate Analysis, 2012, 111, 94-109.	1.0	17
117	Applied Surrogate Endpoint Evaluation Methods with SAS and R. , O, , .		17
118	Pseudolikelihood Modeling of Multivariate Outcomes in Developmental Toxicology. Journal of the American Statistical Association, 1999, 94, 734.	3.1	17
119	Prediction of survival and opportunistic infections in HIV-infected patients: a comparison of imputation methods of incomplete CD4 counts. Statistics in Medicine, 2002, 21, 1387-1408.	1.6	16
120	Sensitivity Analysis of Continuous Incomplete Longitudinal Outcomes. Statistica Neerlandica, 2003, 57, 112-135.	1.6	16
121	On the Weibull-Gamma frailty model, its infinite moments, and its connection to generalized log-logistic, logistic, Cauchy, and extreme-value distributions. Journal of Statistical Planning and Inference, 2011, 141, 861-868.	0.6	16
122	A joint model for hierarchical continuous and zero-inflated overdispersed count data. Journal of Statistical Computation and Simulation, 2015, 85, 552-571.	1.2	16
123	Mixed models approaches for joint modeling of different types of responses. Journal of Biopharmaceutical Statistics, 2016, 26, 601-618.	0.8	16
124	Behaviour of the likelihood ratio test statistic under a bahadur model for exchangeable binary data. Journal of Statistical Computation and Simulation, 1998, 61, 15-38.	1.2	15
125	Model-Based Estimates of Long-Term Persistence of Induced HPV Antibodies: A Flexible Subject-Specific Approach. Journal of Biopharmaceutical Statistics, 2013, 23, 1228-1248.	0.8	15
126	Iterative Multiple Imputation: A Framework to Determine the Number of Imputed Datasets. American Statistician, 2020, 74, 125-136.	1.6	15

#	Article	IF	CITATIONS
127	Infectious diseases epidemiology, quantitative methodology, and clinical research in the midst of the COVID-19 pandemic: Perspective from a European country. Contemporary Clinical Trials, 2020, 99, 106189.	1.8	14
128	Can COVID-19 symptoms as reported in a large-scale online survey be used to optimise spatial predictions of COVID-19 incidence risk in Belgium?. Spatial and Spatio-temporal Epidemiology, 2020, 35, 100379.	1.7	14
129	Methods for Analyzing Multivariate Binary Data, with Association between Outcomes of Interest. Biometrics, 1996, 52, 1121.	1.4	13
130	A pattern-mixture odds ratio model for incomplete categorical data. Communications in Statistics - Theory and Methods, 1999, 28, 2843-2869.	1.0	13
131	Formal and Informal Model Selection with Incomplete Data. Statistical Science, 2008, 23, .	2.8	13
132	Modeling overdispersed longitudinal binary data using a combined beta and normal random-effects model. Archives of Public Health, 2012, 70, 7.	2.4	13
133	Surrogate end points: hopes and perils. Expert Review of Pharmacoeconomics and Outcomes Research, 2008, 8, 255-259.	1.4	12
134	A Unified Approach to Multiâ€item Reliability. Biometrics, 2010, 66, 1061-1068.	1.4	12
135	An information-theoretic approach to surrogate-marker evaluation with failure time endpoints. Lifetime Data Analysis, 2011, 17, 195-214.	0.9	12
136	Analysis of an incomplete binary outcome derived from frequently recorded longitudinal continuous data: application to daily pain evaluation. Statistics in Medicine, 2012, 31, 1554-1571.	1.6	12
137	A joint model for longitudinal continuous and timeâ€ŧoâ€event outcomes with direct marginal interpretation. Biometrical Journal, 2013, 55, 572-588.	1.0	12
138	An Information-Theoretic Approach for the Evaluation of Surrogate Endpoints Based on Causal Inference. Biometrics, 2016, 72, 669-677.	1.4	12
139	Missing data perspectives of the fluvoxamine data set: a review. , 1999, 18, 2449-2464.		11
140	A joint marginalized multilevel model for longitudinal outcomes. Journal of Applied Statistics, 2012, 39, 2413-2430.	1.3	11
141	Reliability measures in item response theory: Manifest versus latent correlation functions. British Journal of Mathematical and Statistical Psychology, 2015, 68, 43-64.	1.4	11
142	Establishing normative data for multi-trial memory tests: the multivariate regression-based approach. Clinical Neuropsychologist, 2017, 31, 1173-1187.	2.3	11
143	Repeated-measures models to evaluate a hepatitis B vaccination programme. Statistics in Medicine, 2001, 20, 951-963.	1.6	10
144	Kernel weighted influence measures. Computational Statistics and Data Analysis, 2005, 48, 467-487.	1.2	10

#	Article	IF	CITATIONS
145	Flexible surrogate marker evaluation from several randomized clinical trials with continuous endpoints, using R and SAS. Computational Statistics and Data Analysis, 2007, 51, 4152-4163.	1.2	10
146	Incomplete Data in Clinical Studies: Analysis, Sensitivity, and Sensitivity Analysis. Drug Information Journal, 2009, 43, 409-429.	0.5	10
147	Rejoinder on: Missing data methods in longitudinal studies: a review. Test, 2009, 18, 68-75.	1.1	10
148	Semi-parametric marginal models for hierarchical data and their corresponding full models. Computational Statistics and Data Analysis, 2010, 54, 585-597.	1.2	10
149	A characterization of missingness at random in a generalized sharedâ€parameter joint modeling framework for longitudinal and timeâ€toâ€event data, and sensitivity analysis. Biometrical Journal, 2014, 56, 1001-1015.	1.0	10
150	Is there a correlation between maternal venous hemodynamic dysfunction and proteinuria of preeclampsia?. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2014, 181, 246-250.	1.1	10
151	A combined gamma frailty and normal random-effects model for repeated, overdispersed time-to-event data. Statistical Methods in Medical Research, 2015, 24, 434-452.	1.5	10
152	Modeling combined continuous and ordinal outcomes in a clustered setting. Journal of Agricultural, Biological, and Environmental Statistics, 2004, 9, 515-530.	1.4	9
153	A flexible marginal modelling strategy for non-monotone missing data. Journal of the Royal Statistical Society Series A: Statistics in Society, 2008, 171, 347-373.	1.1	9
154	Ignoring overdispersion in hierarchical loglinear models: Possible problems and solutions. Statistics in Medicine, 2012, 31, 1475-1482.	1.6	9
155	Local influence diagnostics for generalized linear mixed models with overdispersion. Journal of Applied Statistics, 2017, 44, 620-641.	1.3	9
156	Evaluation of six months sputum culture conversion as a surrogate endpoint in a multidrug resistant-tuberculosis trial. PLoS ONE, 2018, 13, e0200539.	2.5	9
157	Univariate Versus Multivariate Surrogates in the Single-Trial Setting. Statistics in Biopharmaceutical Research, 2019, 11, 301-310.	0.8	9
158	Bayesian testing for trend in a power model for clustered binary data. Environmental and Ecological Statistics, 2004, 11, 305-322.	3.5	8
159	Biometry, Biometrics, Biostatistics, Bioinformatics, , Bio-X. Biometrics, 2005, 61, 1-9.	1.4	8
160	A HIERARCHICAL BINOMIAL-POISSON MODEL FOR THE ANALYSIS OF A CROSSOVER DESIGN FOR CORRELATED BINARY DATA WHEN THE NUMBER OF TRIALS IS DOSE-DEPENDENT. Journal of Biopharmaceutical Statistics, 2005, 15, 225-239.	0.8	8
161	Using earlier measures in a longitudinal sequence as a potential surrogate for a later one. Computational Statistics and Data Analysis, 2010, 54, 1342-1354.	1.2	8
162	A hierarchical Bayesian approach for the analysis of longitudinal count data with overdispersion: A simulation study. Computational Statistics and Data Analysis, 2013, 57, 233-245.	1.2	8

#	Article	IF	CITATIONS
163	On the Connections Between Bridge Distributions, Marginalized Multilevel Models, and Generalized Linear Mixed Models. International Journal of Statistics and Probability, 2013, 2, .	0.3	8
164	Local influence diagnostics for hierarchical count data models with overdispersion and excess zeros. Biometrical Journal, 2016, 58, 1390-1408.	1.0	8
165	Exploring the relationship between the causalâ€inference and metaâ€analytic paradigms for the evaluation of surrogate endpoints. Statistics in Medicine, 2016, 35, 1281-1298.	1.6	8
166	A linear mixed model to estimate COVIDâ€19â€induced excess mortality. Biometrics, 2023, 79, 417-425.	1.4	8
167	Litter-based methods in developmental toxicity risk assessment. Environmental and Ecological Statistics, 2000, 7, 57-76.	3.5	7
168	Information Theory–Based Surrogate Marker Evaluation from Several Randomized Clinical Trials with Binary Endpoints, Using SAS. Journal of Biopharmaceutical Statistics, 2008, 18, 326-341.	0.8	7
169	Marginal Correlation in Longitudinal Binary Data Based on Generalized Linear Mixed Models. Communications in Statistics - Theory and Methods, 2010, 39, 3540-3557.	1.0	7
170	Comparison of risks of cardiovascular events in the elderly using standard survival analysis and multiple-events and recurrent-events methods. BMC Medical Research Methodology, 2015, 15, 15.	3.1	7
171	Different methods for handling incomplete longitudinal binary outcome due to missing at random dropout. Statistical Methodology, 2015, 24, 12-27.	0.5	7
172	A flexible joint modeling framework for longitudinal and time-to-event data with overdispersion. Statistical Methods in Medical Research, 2016, 25, 1661-1676.	1.5	7
173	Multiple Imputation. , 0, , 105-117.		7
174	Multivariate Clustered Data Analysis in Developmental Toxicity Studies. Statistica Neerlandica, 2001, 55, 319-345.	1.6	6
175	A comparison of various software tools for dealing with missing data via imputation. Journal of Statistical Computation and Simulation, 2011, 81, 1653-1675.	1.2	6
176	Estimation After a Group Sequential Trial. Statistics in Biosciences, 2015, 7, 187-205.	1.2	6
177	Unbalanced cluster sizes and rates of convergence in mixed-effects models for clustered data. Journal of Statistical Computation and Simulation, 2016, 86, 2123-2139.	1.2	6
178	Fast and highly efficient pseudo-likelihood methodology for large and complex ordinal data. Statistical Methods in Medical Research, 2017, 26, 2758-2779.	1.5	6
179	Negative variance components for non-negative hierarchical data with correlation, over-, and/or underdispersion. Journal of Applied Statistics, 2017, 44, 1047-1063.	1.3	6
180	Fast, closed-form, and efficient estimators for hierarchical models with AR(1) covariance and unequal cluster sizes. Communications in Statistics Part B: Simulation and Computation, 2018, 47, 1492-1505.	1.2	6

4

#	ARTICLE	IF	CITATIONS
181	A closed-form estimator for meta-analysis and surrogate markers evaluation. Journal of Biopharmaceutical Statistics, 2019, 29, 318-332.	0.8	6
182	Statistical Methods for Developmental Toxicity: Analysis of Clustered Multivariate Binary Data. Annals of the New York Academy of Sciences, 1999, 895, 196-211.	3.8	5
183	Sensitivity analysis of longitudinal binary quality of life data with drop-out: an example using the EORTC QLQ-C30. Statistics in Medicine, 2001, 20, 3901-3920.	1.6	5
184	A model for overdispersed hierarchical ordinal data. Statistical Modelling, 2014, 14, 399-415.	1.1	5
185	Quantifying intraclass correlations for count and timeâ€ŧoâ€event data. Biometrical Journal, 2016, 58, 852-867.	1.0	5
186	Thyroid Cancer Incidence around the Belgian Nuclear Sites, 2000–2014. International Journal of Environmental Research and Public Health, 2017, 14, 988.	2.6	5
187	A Weibull-count approach for handling under- and overdispersed longitudinal/clustered data structures. Statistical Modelling, 2019, 19, 569-589.	1.1	5
188	Testing for bias in weighted estimating equations. Biostatistics, 2001, 2, 295-307.	1.5	4
189	MODELING ANTI-KLH ELISA DATA USING TWO-STAGE AND MIXED EFFECTS MODELS IN SUPPORT OF IMMUNOTOXICOLOGICAL STUDIES. Journal of Biopharmaceutical Statistics, 2005, 15, 205-223.	0.8	4
190	Estimation of the Force of Infection from Current Status Data Using Generalized Linear Mixed Models. Journal of Applied Statistics, 2007, 34, 923-939.	1.3	4
191	Psychotropic drug classification based on sleep?wake behaviour of rats. Journal of the Royal Statistical Society Series C: Applied Statistics, 2007, 56, 223-234.	1.0	4
192	A Comparison of Doubly Hierarchical Discriminant Analyses for Multiple Class Longitudinal Data from EEG Experiments. Journal of Biopharmaceutical Statistics, 2008, 18, 1120-1135.	0.8	4
193	The Combined Model: A Tool for Simulating Correlated Counts with Overdispersion. Communications in Statistics Part B: Simulation and Computation, 2016, 45, 2491-2510.	1.2	4
194	Local influence diagnostics for incomplete overdispersed longitudinal counts. Journal of Applied Statistics, 2016, 43, 1722-1737.	1.3	4
195	An interpretation of radial basis function networks as zero-mean Gaussian process emulators in cluster space. Journal of Computational and Applied Mathematics, 2020, 363, 249-255.	2.0	4
196	Thyroid cancer incidence near nuclear sites in Belgium: An ecological study at small geographical level. International Journal of Cancer, 2020, 146, 3034-3043.	5.1	4
197	The Direct Likelihood Method. , 0, , 75-92.		4

#	Article	IF	CITATIONS
199	Analysis of incomplete public health data. Revue D'Epidemiologie Et De Sante Publique, 1999, 47, 499-514.	0.5	4
200	Pattern-mixture models for categorical outcomes with non-monotone missingness. Journal of Statistical Computation and Simulation, 2010, 80, 1279-1296.	1.2	3
201	Joint modeling of hierarchically clustered and overdispersed non-gaussian continuous outcomes for comet assay data. Pharmaceutical Statistics, 2012, 11, 449-455.	1.3	3
202	A Bayesian, Generalized Frailty Model for Comet Assays. Journal of Biopharmaceutical Statistics, 2013, 23, 618-636.	0.8	3
203	A Marginalized Combined Gamma Frailty and Normal Random-effects Model for Repeated, Overdispersed, Time-to-event Outcomes. Communications in Statistics - Theory and Methods, 2014, 43, 4806-4828.	1.0	3
204	A permutational-splitting sample procedure to quantify expert opinion on clusters of chemical compounds using high-dimensional data. Annals of Applied Statistics, 2014, 8, .	1.1	3
205	Properties of Estimators in Exponential Family Settings with Observationbased Stopping Rules. Journal of Biometrics & Biostatistics, 2015, 07, .	4.0	3
206	Comparison of Additive and Multiplicative Bayesian Models for Longitudinal Count Data with Overdispersion Parameters: A Simulation Study. Communications in Statistics Part B: Simulation and Computation, 2015, 44, 454-473.	1.2	3
207	Second-order generalized estimating equations for correlated count data. Computational Statistics, 2016, 31, 749-770.	1.5	3
208	A novel approach to estimation of the time to biomarker threshold: applications to HIV. Pharmaceutical Statistics, 2016, 15, 541-549.	1.3	3
209	Parametric Overdispersed Frailty Models for Current Status Data. Biometrics, 2017, 73, 1388-1400.	1.4	3
210	Approximate Central Limit Theorems. Journal of Theoretical Probability, 2018, 31, 1590-1605.	0.8	3
211	University of Pennsylvania 11th annual conference on statistical issues in clinical trials: Estimands, missing data and sensitivity analysis (morning panel session). Clinical Trials, 2019, 16, 350-362.	1.6	3
212	Fast two-stage estimator for clustered count data with overdispersion. Journal of Statistical Computation and Simulation, 2019, 89, 2678-2693.	1.2	3
213	A reflection on the causal interpretation of individual-level surrogacy. Journal of Biopharmaceutical Statistics, 2019, 29, 529-540.	0.8	3
214	Graduate Education in Statistics and Data Science: The Why, When, Where, Who, and What. Annual Review of Statistics and Its Application, 2021, 8, 25-39.	7.0	3
215	Clusters with random size: maximum likelihood versus weighted estimation. Statistica Sinica, 2018, , .	0.3	3
216	An efficient algorithm to assess multivariate surrogate endpoints in a causal inference framework. Computational Statistics and Data Analysis, 2022, , 107494.	1.2	3

#	Article	IF	CITATIONS
217	Flexible Quantitative Risk Assessment for Developmental Toxicity Based on Fractional Polynomial Predictors. Biometrical Journal, 2000, 42, 279-302.	1.0	2
218	Introducing the Multivariate Dale Model in Population-Based Genetic Association Studies. Biometrical Journal, 2004, 46, 187-202.	1.0	2
219	Terminology and Framework. , 0, , 27-37.		2
220	Investigating Association Between Behavior, Corticosterone, Heart Rate, and Blood Pressure in Rats Using Surrogate Marker Evaluation Methodology. Journal of Biopharmaceutical Statistics, 2009, 19, 133-149.	0.8	2
221	Discussion of Likelihood Inference for Models with Unobservables: Another View. Statistical Science, 2009, 24, .	2.8	2
222	Modelling multivariate, overdispersed binomial data with additive and multiplicative random effects. Statistical Modelling, 2014, 14, 99-133.	1.1	2
223	Marginal Correlation from Logit- and Probit-Beta-Normal Models for Hierarchical Binary Data. Communications in Statistics - Theory and Methods, 2014, 43, 4164-4178.	1.0	2
224	A taxonomy of mixing and outcome distributions based on conjugacy and bridging. Communications in Statistics - Theory and Methods, 2016, 45, 1953-1968.	1.0	2
225	A Tutorial on the Practical Use and Implication of Complete Sufficient Statistics. International Statistical Review, 2018, 86, 403-414.	1.9	2
226	Cluster analysis for repeated data with dropout: Sensitivity analysis using a distal event. Journal of Biopharmaceutical Statistics, 2018, 28, 983-1004.	0.8	2
227	A maximum entropy approach for the evaluation of surrogate endpoints based on causal inference. Statistics in Medicine, 2018, 37, 4525-4538.	1.6	2
228	Integrated nested Laplace approximation for the analysis of count data via the combined model: A simulation study. Communications in Statistics Part B: Simulation and Computation, 2019, 48, 819-836.	1.2	2
229	Generating random correlation matrices with fixed values: An application to the evaluation of multivariate surrogate endpoints. Computational Statistics and Data Analysis, 2020, 142, 106834.	1.2	2
230	On the relationship between association and surrogacy when both the surrogate and true endpoint are binary outcomes. Statistics in Medicine, 2020, 39, 3867-3878.	1.6	2
231	Joint modelling of longitudinal response and time-to-event data using conditional distributions: a Bayesian perspective. Journal of Applied Statistics, 2022, 49, 2228-2245.	1.3	2
232	Evaluation of surrogate endpoints in randomized experiments with mixed discrete and continuous outcomes. Statistics in Medicine, 2001, 20, 3023-3038.	1.6	2
233	Robust benchmark dose determination based on profile score methods. Environmental and Ecological Statistics, 2002, 9, 357-377.	3.5	1
234	Rejoinder to Use of Principal Component Analysis and the GE -Biplotfor the Graphical Exploration of Gene Expression Data. Biometrics, 2005, 61, 632-634.	1.4	1

#	Article	IF	CITATIONS
235	Marginalizing pattern-mixture models for categorical data subject to monotone missingness. Metrika, 2009, 69, 305-336.	0.8	1
236	Discussion Contribution to 091037PR4 (Ghosh, Taylor, and Sargent). Biometrics, 2012, 68, 233-235.	1.4	1
237	Analysing Intensive Longitudinal Data After Summarization at Landmarks: An Application to Daily Pain Evaluation in a Clinical Trial. Journal of the Royal Statistical Society Series A: Statistics in Society, 2012, 175, 513-534.	1.1	1
238	Pseudo-Likelihood Methodology for Hierarchical Count Data. Communications in Statistics - Theory and Methods, 2014, 43, 4790-4805.	1.0	1
239	Empirical Bayes estimates for correlated hierarchical data with overdispersion. Pharmaceutical Statistics, 2014, 13, 316-326.	1.3	1
240	Mixed Models with Emphasis on Large Data Sets. Quantitative Methods in the Humanities and Social Sciences, 2018, , 11-28.	0.1	1
241	Joint modeling of multiple ordinal adherence outcomes via generalized estimating equations with flexible correlation structure. Statistics in Medicine, 2018, 37, 983-995.	1.6	1
242	On the Asymptotic Behavior of the Contaminated Sample Mean. Mathematical Methods of Statistics, 2018, 27, 312-323.	0.6	1
243	Extending Gaussian process emulation using cluster analysis and artificial neural networks to fit big training sets. Journal of Simulation, 2019, 13, 195-208.	1.5	1
244	A reflection on the possibility of finding a good surrogate. Journal of Biopharmaceutical Statistics, 2019, 29, 468-477.	0.8	1
245	Optimal weighted estimation versus Cochran–Mantel–Haenszel. Communications in Statistics Part B: Simulation and Computation, 2022, 51, 3645-3659.	1.2	1
246	Serial correlation structures in latent linear mixed models for analysis of multivariate longitudinal ordinal responses. Statistics in Medicine, 2021, 40, 578-592.	1.6	1
247	The individualâ€level surrogate threshold effect in a causalâ€inference setting with normally distributed endpoints. Pharmaceutical Statistics, 2021, 20, 1216-1231.	1.3	1
248	The Expectation–Maximization Algorithm. , 0, , 93-104.		1
249	A Perspective on Simple Methods. , 0, , 39-54.		Ο
250	Analysis of the Depression Trials. , 0, , 67-74.		0
251	Norman Breslow's leadership for the international biometric society. Lifetime Data Analysis, 2007, 13, 445-447.	0.9	0
252	Incomplete Data in Clinical Studies: Analysis, Sensitivity, and Sensitivity Analysis—Rejoinder. Drug Information Journal, 2009, 43, 447-448.	0.5	0

#	Article	IF	CITATIONS
253	Comparison of the guaranteed analysis with the measured nutrient composition of commercial pet foods. Journal of Animal Physiology and Animal Nutrition, 2009, 93, 141-141.	2.2	0
254	Flexible estimation of serial correlation in nonlinear mixed models. Journal of Applied Statistics, 2010, 37, 833-846.	1.3	0
255	Correction for Model Selection Bias Using a Modified Model Averaging Approach for Supervised Learning Methods Applied to EEG Experiments. Journal of Biopharmaceutical Statistics, 2010, 20, 768-786.	0.8	0
256	Characterizing persistent disturbing behavior using longitudinal and multivariate techniques. Journal of Applied Statistics, 2010, 37, 341-355.	1.3	0
257	Sensitivity analysis for incomplete continuous data. Test, 2011, 20, 589-606.	1.1	0
258	A Multilevel Model for Hierarchical, Repeated, and Overdispersed Time-to-Event Outcomes and Its Estimation Strategies. Journal of Biopharmaceutical Statistics, 2013, 23, 1420-1434.	0.8	0
259	Longitudinal conditional models with intermittent missingness: SAS code and applications. Journal of Statistical Computation and Simulation, 2014, 84, 753-780.	1.2	0
260	Nonlinear Fractional Polynomials for Estimating Long-Term Persistence of Induced Anti-HPV Antibodies: A Hierarchical Bayesian Approach. Statistics in Biopharmaceutical Research, 2014, 6, 199-212.	0.8	0
261	Finite information limit variance-covariance structures: Is the entire dataset needed for analysis?. , 2016, , .		0
262	Mechanism for missing data incorporated in joint modelling of ordinal responses. Journal of the Royal Statistical Society Series C: Applied Statistics, 2017, 66, 1049-1064.	1.0	0
263	Response to comments on "Marginalized multilevel hurdle and zeroâ€inflated models for overdispersed and correlated count data with excess zerosâ€i Statistics in Medicine, 2018, 37, 1942-1946.	1.6	0
264	Random effects models for estimation of the probability and time to progression of a continuous biomarker. Pharmaceutical Statistics, 2019, 18, 671-687.	1.3	0
265	Doubly robust pseudo-likelihood for incomplete hierarchical binary data. Statistical Modelling, 2020, 20, 42-57.	1.1	0
266	High dimensional surrogacy: computational aspects of an upscaled analysis. Journal of Biopharmaceutical Statistics, 2020, 30, 104-120.	0.8	0
267	Improved longitudinal data analysis for cross-over design settings, with a piecewise linear mixed-effects model. Communications in Statistics Case Studies Data Analysis and Applications, 2021, 7, 413-431.	0.3	0
268	A multiple regression imputation method with application to sensitivity analysis under intermittent missingness. Communications in Statistics - Theory and Methods, 0, , 1-16.	1.0	0
269	Pairwise joint modeling of clustered and highâ€dimensional outcomes with covariate missingness in pediatric pneumonia care. Pharmaceutical Statistics, 2022, , .	1.3	0
270	Implementing the meta-analytic approach for the evaluation of surrogate endpoints in SAS and R: a word of caution. Journal of Biopharmaceutical Statistics, 2022, 32, 705-716.	0.8	0

0

#	Article	IF	CITATIONS
271	Weighted Estimating Equations. , 0, , 119-134.		0
272	Combining GEE and MI. , 0, , 135-143.		0
273	Likelihood-Based Frequentist Inference. , 0, , 145-162.		0
274	Analysis of the Age-Related Macular Degeneration. , 0, , 163-170.		0
275	Incomplete Data and SAS. , 0, , 171-182.		0
276	Selection Models. , 0, , 183-213.		0
277	Pattern-Mixture Models. , 0, , 215-247.		0
278	Shared-Parameter Models. , 0, , 249-251.		0
279	Protective Estimation. , 0, , 253-282.		0
280	MNAR, MAR, and the Nature of Sensitivity. , 0, , 283-312.		0
281	Key Examples. , 0, , 11-25.		0
282	Sensitivity Happens. , 0, , 313-328.		0
283	Regions of Ignorance and Uncertainty. , 0, , 329-352.		0
284	Local and Global Influence Methods. , 0, , 353-415.		0
285	The Nature of Local Influence. , 0, , 417-430.		0
286	A Latent-Class Mixture Model for Incomplete Longitudinal Gaussian Data. , 0, , 431-450.		0
287	The Age-Related Macular Degeneration Trial. , 0, , 451-460.		0

#	Article	IF	CITATIONS
289	Analysis of the Orthodontic Growth Data. , 0, , 55-66.		0
290	A normal-probit-binomial model for the analysis of repeated sum scores from multi-item questionnaires. Communications in Statistics Part B: Simulation and Computation, 0, , 1-18.	1.2	0