
Daniel Franklin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5484230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces. Nature Communications, 2015, 6, 7337.	12.8	273
2	Adaptive Multispectral Infrared Camouflage. ACS Photonics, 2018, 5, 4513-4519.	6.6	134
3	Actively addressed single pixel full-colour plasmonic display. Nature Communications, 2017, 8, 15209.	12.8	128
4	Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nature Neuroscience, 2021, 24, 1035-1045.	14.8	98
5	Resettable skin interfaced microfluidic sweat collection devices with chemesthetic hydration feedback. Nature Communications, 2019, 10, 5513.	12.8	74
6	Soft, skin-interfaced sweat stickers for cystic fibrosis diagnosis and management. Science Translational Medicine, 2021, 13, .	12.4	65
7	Drastic enhancement of photoelectrochemical water splitting performance over plasmonic Al@TiO2 heterostructured nanocavity arrays. Nano Energy, 2018, 51, 400-407.	16.0	64
8	Self-assembled plasmonics for angle-independent structural color displays with actively addressed black states. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13350-13358.	7.1	54
9	Covert infrared image encoding through imprinted plasmonic cavities. Light: Science and Applications, 2018, 7, 93.	16.6	51
10	Hybrid Coupling Mechanism in a System Supporting High Order Diffraction, Plasmonic, and Cavity Resonances. Physical Review Letters, 2014, 113, 263902.	7.8	47
11	Wireless, implantable catheter-type oximeter designed for cardiac oxygen saturation. Science Advances, 2021, 7, .	10.3	45
12	Dynamically tunable extraordinary light absorption in monolayer graphene. Physical Review B, 2017, 96, .	3.2	43
13	Biocompatible Light Guideâ€Assisted Wearable Devices for Enhanced UV Light Delivery in Deep Skin. Advanced Functional Materials, 2021, 31, 2100576.	14.9	26
14	Polarization-independent phase modulators enabled by two-photon polymerization. Optics Express, 2017, 25, 33688.	3.4	24
15	Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells. Scientific Reports, 2016, 6, 31013.	3.3	23
16	Materials Selections and Growth Conditions for Largeâ€Area, Multilayered, Visible Negative Index Metamaterials Formed by Nanotransfer Printing. Advanced Optical Materials, 2014, 2, 256-261.	7.3	22
17	Transformable, Freestanding 3D Mesostructures Based on Transient Materials and Mechanical Interlocking. Advanced Functional Materials, 2019, 29, 1903181.	14.9	22
18	Bioresorbable Microdroplet Lasers as Injectable Systems for Transient Thermal Sensing and Modulation. ACS Nano, 2021, 15, 2327-2339.	14.6	20

DANIEL FRANKLIN

#	Article	IF	CITATIONS
19	Two-photon polymerization enabled multi-layer liquid crystal phase modulator. Scientific Reports, 2017, 7, 16260.	3.3	18
20	Multi-spectral frequency selective mid-infrared microbolometers. Optics Express, 2018, 26, 32931.	3.4	13
21	Cavity-induced hybrid plasmon excitation for perfect infrared absorption. Optics Letters, 2018, 43, 6001.	3.3	11
22	High‣fficiency Broadband Midâ€Infrared Flat Lens. Advanced Optical Materials, 2018, 6, 1800216.	7.3	9
23	Atomic Layer Deposition Tuning of Subwavelength Aluminum Grating for Angle-Insensitive Plasmonic Color. ACS Applied Nano Materials, 2018, 1, 5210-5216.	5.0	7
24	A Wireless Near-Infrared Spectroscopy Device for Flap Monitoring: Proof of Concept in a Porcine Musculocutaneous Flap Model. Journal of Reconstructive Microsurgery, 2022, 38, 096-105.	1.8	6
25	Broadband angle-independent antireflection coatings on nanostructured light trapping solar cells. Physical Review Materials, 2018, 2, .	2.4	6
26	Negative Index Materials: Materials Selections and Growth Conditions for Large-Area, Multilayered, Visible Negative Index Metamaterials Formed by Nanotransfer Printing (Advanced Optical Materials) Tj ETQq0 0 () r gB T /Ov	verlæck 10 Tf
27	44â€3: Large Area Multi‣ayer Liquid Crystal Phase Modulators Enabled by Twoâ€Photon Polymerization. Digest of Technical Papers SID International Symposium, 2018, 49, 585-588.	0.3	1
28	Superchiral light generation on achiral nanostructured surfaces. , 2018, , .		1
29	Liquid Crystal Tunable Plasmonic Color. , 2015, , .		0
30	Color changing plasmonic surfaces utilizing liquid crystal (Conference Presentation). , 2016, , .		0
31	4D Electronic Systems: Transformable, Freestanding 3D Mesostructures Based on Transient Materials and Mechanical Interlocking (Adv. Funct. Mater. 40/2019). Advanced Functional Materials, 2019, 29, 1970277.	14.9	0

³² Full RGB Liquid Crystal-Tunable Plasmonic Color and TFT Integration., 2017, , .

0