
Rosana Almada Bassani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5484038/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Relaxation in rabbit and rat cardiac cells: speciesâ€dependent differences in cellular mechanisms Journal of Physiology, 1994, 476, 279-293.	2.9	578
2	Mitochondrial and sarcolemmal Ca2+ transport reduce [Ca2+]i during caffeine contractures in rabbit cardiac myocytes Journal of Physiology, 1992, 453, 591-608.	2.9	209
3	Macrophage-dependent IL-1β production induces cardiac arrhythmias in diabetic mice. Nature Communications, 2016, 7, 13344.	12.8	203
4	Calibration of indo-1 and resting intracellular [Ca]i in intact rabbit cardiac myocytes. Biophysical Journal, 1995, 68, 1453-1460.	0.5	173
5	Na-Ca Exchange and Ca Fluxes during Contraction and Relaxation in Mammalian Ventricular Musclea. Annals of the New York Academy of Sciences, 1996, 779, 430-442.	3.8	109
6	Paradoxical Twitch Potentiation After Rest in Cardiac Muscle: Increased Fractional Release of SR Calcium. Journal of Molecular and Cellular Cardiology, 1993, 25, 1047-1057.	1.9	81
7	Rate of diastolic Ca release from the sarcoplasmic reticulum of intact rabbit and rat ventricular myocytes. Biophysical Journal, 1995, 68, 2015-2022.	0.5	78
8	Chasing cardiac physiology and pathology down the CaMKII cascade. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H1177-H1191.	3.2	78
9	Competition and redistribution among calcium transport systems in rabbit cardiac myocytes. Cardiovascular Research, 1993, 27, 1772-1777.	3.8	72
10	Na-Ca Exchange is Required for Rest-decay but not for Rest-potential of Twitches in Rabbit and Rat Ventricular Myocytes. Journal of Molecular and Cellular Cardiology, 1994, 26, 1335-1347.	1.9	72
11	Ca2+ cycling between sarcoplasmic reticulum and mitochondria in rabbit cardiac myocytes Journal of Physiology, 1993, 460, 603-621.	2.9	67
12	Relaxation in ferret ventricular myocytes: role of the sarcolemmal Ca ATPase. Pflugers Archiv European Journal of Physiology, 1995, 430, 573-578.	2.8	65
13	Relaxation in ferret ventricular myocytes: unusual interplay among calcium transport systems Journal of Physiology, 1994, 476, 295-308.	2.9	62
14	Ca flux, contractility, and excitation-contraction coupling in hypertrophic rat ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H1348-H1360.	3.2	47
15	Action potential duration determines sarcoplasmic reticulum Ca2+reloading in mammalian ventricular myocytes. Journal of Physiology, 2004, 559, 593-609.	2.9	45
16	Toll-like receptor 4 activation promotes cardiac arrhythmias by decreasing the transient outward potassium current (Ito) through an IRF3-dependent and MyD88-independent pathway. Journal of Molecular and Cellular Cardiology, 2014, 76, 116-125.	1.9	42
17	Lethal Effect of Electric Fields on Isolated Ventricular Myocytes. IEEE Transactions on Biomedical Engineering, 2008, 55, 2635-2642.	4.2	38
18	Passive Ca2+ binding in ventricular myocardium of neonatal and adult rats. Cell Calcium, 1998, 23, 433-442.	2.4	31

#	Article	IF	CITATIONS
19	Transient outward potassium current and Ca2+ homeostasis in the heart: beyond the action potential. Brazilian Journal of Medical and Biological Research, 2006, 39, 393-403.	1.5	26
20	Enhanced calcium mobilization in rat ventricular myocytes during the onset of pressure overload-induced hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H1803-H1813.	3.2	26
21	Subsensitivity to β-adrenoceptor agonists in right atria isolated from footshock-stressed rats. General Pharmacology, 1987, 18, 473-477.	0.7	24
22	Supersensitivity to isoprenaline and epinephrine in right atria isolated from rats submitted to a single swimming session. General Pharmacology, 1988, 19, 129-135.	0.7	24
23	Contribution of Ca ²⁺ transporters to relaxation in intact ventricular myocytes from developing rats. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H2406-H2413.	3.2	23
24	Increased spontaneous activity and reduced inotropic response to catecholamines in ventricular myocytes from footshock-stressed rats. Stress, 2010, 13, 73-82.	1.8	20
25	Changes in Calcium Uptake Rate by Rat Cardiac Mitochondria during Postnatal Development. Journal of Molecular and Cellular Cardiology, 1998, 30, 2013-2023.	1.9	19
26	Electric field stimulation of cardiac myocytes during postnatal development. IEEE Transactions on Biomedical Engineering, 2001, 48, 630-636.	4.2	18
27	Application based on the Canny edge detection algorithm for recording contractions of isolated cardiac myocytes. Computers in Biology and Medicine, 2017, 81, 106-110.	7.0	18
28	High Thyrotropin Is Critical for Cardiac Electrical Remodeling and Arrhythmia Vulnerability in Hypothyroidism. Thyroid, 2019, 29, 934-945.	4.5	17
29	Rest-dependence of Twitch Amplitude and Sarcoplasmic Reticulum Calcium Content in the Developing Rat Myocardium. Journal of Molecular and Cellular Cardiology, 2001, 33, 711-722.	1.9	16
30	Medical equipment classification: method and decision-making support based on paraconsistent annotated logic. Medical and Biological Engineering and Computing, 2012, 50, 395-402.	2.8	16
31	Measuring [Ca2+] with fluorescent indicators: theoretical approach to the ratio method. Cell Calcium, 1998, 24, 17-26.	2.4	13
32	Transthoracic cardiac ultrasonic stimulation induces a negative chronotropic effect. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 2655-61.	3.0	13
33	Greater Cardiac Cell Excitation Efficiency With Rapidly Switching Multidirectional Electrical Stimulation. IEEE Transactions on Biomedical Engineering, 2013, 60, 28-34.	4.2	13
34	Combining stimulus direction and waveform for optimization of threshold stimulation of isolated ventricular myocytes. Physiological Measurement, 2006, 27, 851-863.	2.1	12
35	Pacemaker activity in the insect (T. molitor) heart: role of the sarcoplasmic reticulum. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1838-R1845.	1.8	11
36	Cholinergic?adrenergic antagonism in the induction of tachyarrhythmia by electrical stimulation in isolated rat atria*1. Journal of Molecular and Cellular Cardiology, 2004, 37, 127-135.	1.9	9

#	Article	IF	CITATIONS
37	Role of Acetylcholine in Electrical Stimulation-Induced Arrhythmia in Rat Isolated Atria. Journal of Cardiovascular Pharmacology, 1999, 34, 475-479.	1.9	9
38	SERCA upregulation: Breaking the positive feedback in heart failure?. Cardiovascular Research, 2005, 67, 581-582.	3.8	8
39	Functional antagonism of βâ€adrenoceptor subtypes in the catecholamineâ€induced automatism in rat myocardium. British Journal of Pharmacology, 2011, 162, 1314-1325.	5.4	8
40	Effects of escapable and inescapable foot-shock on rat atrial β-adrenoceptors. Pharmacology Biochemistry and Behavior, 1993, 44, 869-875.	2.9	7
41	Electrocardiogram, heart movement and heart rate in the awake gecko (Hemidactylus mabouia). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2015, 185, 111-118.	1.5	7
42	Estimation of the fractional sarcoplasmic reticulum Ca2+ release in intact cardiomyocytes using integrated Ca2+ fluxes. General Physiology and Biophysics, 2012, 31, 401-408.	0.9	6
43	Rapidly switching multidirectional defibrillation: Reversal of ventricular fibrillation with lower energy shocks. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 3213-3218.	0.8	6
44	Accuracy of electromagnetic models to estimate cardiomyocyte membrane polarization. Medical and Biological Engineering and Computing, 2019, 57, 2617-2627.	2.8	6
45	Inotropic effect of hyperosmotic NaCl solutions on the isolated rat cardiac tissue. Archives Internationales De Physiologie Et De Biochimie, 1990, 98, 397-402.	0.2	5
46	Effect of ryanodine on sinus node recovery time determined in vitro. Brazilian Journal of Medical and Biological Research, 1999, 32, 1039-1043.	1.5	5
47	Osmolality- and Na+-dependent effects of hyperosmotic NaCl solution on contractile activity and Ca2+ cycling in rat ventricular myocytes. Pflugers Archiv European Journal of Physiology, 2007, 455, 617-626.	2.8	5
48	Blood Calcium Levels in Immature Rats: Influence of Extracellular Calcium Concentration on Myocardial Calcium Handling. Experimental Animals, 2012, 61, 399-405.	1.1	5
49	The influence of cell dimensions on the vulnerability of ventricular myocytes to lethal injury by high-intensity electrical fields. Revista Brasileira De Engenharia Biomedica, 2012, 28, 337-345.	0.3	5
50	Atrial chronotropic reactivity to catecholamines in neonatal rats: Contribution of β-adrenoceptor subtypes. European Journal of Pharmacology, 2015, 764, 385-394.	3.5	4
51	System for open-chest, multidirectional electrical defibrillation. Research on Biomedical Engineering, 2016, 32, 74-84.	2.2	4
52	Testing electrode suitability for field stimulation of high-threshold biological preparations. Research on Biomedical Engineering, 2015, 31, 273-276.	2.2	4
53	Methodology and instrumentation for the in vitro sinus node recovery time determination. Journal of Pharmacological Methods, 1990, 23, 117-127.	0.7	3
54	Subsensitivity to beta-adrenergic stimulation in atria from rats infested with Syphacia sp Laboratory Animals, 2003, 37, 63-67.	1.0	3

#	Article	IF	CITATIONS
55	Inhibition of the sarcoplasmic reticulum Ca2+ pump with thapsigargin to estimate the contribution of Na+-Ca2+ exchange to ventricular myocyte relaxation. Brazilian Journal of Medical and Biological Research, 2003, 36, 1717-1723.	1.5	3
56	Reduced responsiveness to noradrenaline in isolated rat atria exposed to hyperosmotic solutions. General Pharmacology, 1991, 22, 151-157.	0.7	2
57	Sarcoplasmic reticulum Ca2+ release channel complex and automatism: A matter of fine tuning. Cardiovascular Research, 2007, 75, 7-9.	3.8	2
58	Determination of the vectorelectrogram in isolated rat atria: application to the study of arrhythmias. Physiological Measurement, 2009, 30, 1281-1291.	2.1	2
59	Muscarinic stimulation and pinacidil produce similar facilitation of tachyarrhythmia induction in rat isolated atria. Journal of Molecular and Cellular Cardiology, 2013, 65, 120-126.	1.9	2
60	Medical equipment classification according to corrective maintenance data: a strategy based on the equipment age. Revista Brasileira De Engenharia Biomedica, 2014, 30, 64-69.	0.3	2
61	Sources of Ca2+ for contraction of the heart tube of Tenebrio molitor (Coleoptera: Tenebrionidae). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2018, 188, 929-937.	1.5	2
62	The ForceLAB simulator: Application to the comparison of current models of cardiomyocyte contraction. Computers in Biology and Medicine, 2021, 131, 104240.	7.0	1
63	Developmental differences in myocardial transmembrane Na ⁺ transport: implications for excitability and Na ⁺ handling. Journal of Physiology, 2022, , .	2.9	1
64	Competition of Ca transporters in relaxation of rabbit ventricular myocytes and Ca redistribution from mitochondria to SR during rest. Journal of Molecular and Cellular Cardiology, 1992, 24, 23.	1.9	0
65	Negative Relationship Between Fractional SR Ca2+ Release and Stimulation Rate. Biophysical Journal, 2009, 96, 11a.	0.5	0
66	More Effective and Safer Cardiac Electric Stimulation Using Multidirectional and Biphasic Stimuli. Biophysical Journal, 2009, 96, 260a.	0.5	0
67	Working out the heart: Functional remodeling by endurance exercise training. Journal of Molecular and Cellular Cardiology, 2013, 60, 47-49.	1.9	Ο
68	Functionally Isolated Sarcoplasmic Reticulum Model: Intrinsic Regulation of SR Ca2+ Release and Tetracaine Effect. Biophysical Journal, 2014, 106, 114a.	0.5	0
69	Doxorubicin Stimulates the Na+/Ca2+ Exchanger in Ventricular Cardiomyocytes. Biophysical Journal, 2014, 106, 531a.	0.5	Ο
70	BugHeart: software for online monitoring and quantitation of contractile activity of the insect heart. Research on Biomedical Engineering, 2019, 35, 235-240.	2.2	0
71	Impact of voltage-gated Na + channel biophysical properties on action potential upstroke. Journal of Molecular and Cellular Cardiology, 2020, 140, 48-49.	1.9	0
72	Calcium release and uptake from the cardiac sarcoplasmic reticulum: Experimental and mathematical models. IFMBE Proceedings, 2007, , 992-995.	0.3	0

#	Article	IF	CITATIONS
73	Modeling, Construction and Characterization of a 66-kHz Ultrasound Transducer for Cardiac Experimentation. , 2011, , .		0