Xue-Liang Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5484015/publications.pdf

Version: 2024-02-01

117625 128289 4,085 59 34 60 citations h-index g-index papers 65 65 65 4621 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Triphenylamines consisting of bulky 3,5-di‑tert‑butyl‑4-anisyl group: Synthesis, redox properties and their radical cation species. Chinese Chemical Letters, 2022, 33, 1870-1874.	9.0	7
2	Rotaxane-branched radical dendrimers with TEMPO termini. Chemical Communications, 2022, 58, 2006-2009.	4.1	4
3	The synergistic effects of central core size and end group engineering on performance of narrow bandgap nonfullerene acceptors. Chemical Engineering Journal, 2022, 435, 135020.	12.7	14
4	Extended phenothiazines: synthesis, photophysical and redox properties, and efficient photocatalytic oxidative coupling of amines. Chemical Science, 2022, 13, 5252-5260.	7.4	7
5	Effective Design Strategy of Small Bipolar Molecules through Fused Conjugation toward 2.5 V Based Redox Flow Batteries. ACS Energy Letters, 2022, 7, 1274-1283.	17.4	18
6	The Molecular Ordering and Doubleâ€Channel Carrier Generation of Nonfullerene Photovoltaics within Multiâ€Lengthâ€Scale Morphology. Advanced Materials, 2022, 34, e2108317.	21.0	43
7	Dilution effect for highly efficient multiple-component organic solar cells. Nature Nanotechnology, 2022, 17, 53-60.	31.5	99
8	Redox Properties of <i>N,N′</i> -Disubstituted Dihydrophenazine and Dihydrodibenzo[<i>a,c</i>]phenazine: The First Isolation of Their Crystalline Radical Cations and Dications. Crystal Growth and Design, 2022, 22, 3587-3593.	3.0	8
9	NIR Photodetectors with Highly Efficient Detectivity Enabled by 2D Fluorinated Dithienopicenocarbazoleâ€Based Ultraâ€Narrow Bandgap Acceptors. Advanced Functional Materials, 2022, 32, .	14.9	24
10	Recent progress on <scp>allâ€small</scp> molecule organic solar cells using <scp>smallâ€molecule</scp> nonfullerene acceptors. InformaÄnÃ-Materiály, 2021, 3, 175-200.	17.3	113
11	Recent advances and perspectives on supramolecular radical cages. Chemical Science, 2021, 12, 13648-13663.	7.4	41
12	Facile construction of well-defined radical metallacycles through coordination-driven self-assembly. Materials Chemistry Frontiers, 2021, 5, 1863-1871.	5.9	17
13	Aryl carbazole-based macrocycles: synthesis, their remarkably stable radical cations and host–guest complexation with fullerenes. Organic Chemistry Frontiers, 2021, 8, 4678-4684.	4. 5	6
14	Theoretical Study of Excited State Charge Transfer Characteristics based on A–D–A and A–DA′D–A Ty Nonfullerene Acceptors. Journal of Physical Chemistry C, 2021, 125, 10250-10259.	/pe 3.1	40
15	Triphenylamine (TPA) radical cations and related macrocycles. Chinese Chemical Letters, 2021, 32, 3331-3341.	9.0	20
16	TEMPO Radical-Functionalized Supramolecular Coordination Complexes with Controllable Spin–Spin Interactions. Journal of the American Chemical Society, 2021, 143, 433-441.	13.7	26
17	Postâ€Synthetic Modification of Metalâ€Organic Frameworks Bearing Phenazine Radical Cations for azaâ€Dielsâ€Alder Reactions. Chemistry - an Asian Journal, 2021, 16, 3985-3992.	3.3	9
18	Highly efficient synthesis of non-planar macrocycles possessing intriguing self-assembling behaviors and ethene/ethyne capture properties. Nature Communications, 2020, 11, 5806.	12.8	22

#	Article	IF	Citations
19	Approaching 16% Efficiency in All-Small-Molecule Organic Solar Cells Based on Ternary Strategy with a Highly Crystalline Acceptor. Joule, 2020, 4, 2223-2236.	24.0	142
20	Controllable synthesis of ultrasmall Pd nanocatalysts templated by supramolecular coordination cages for highly efficient reductive dehalogenation. Journal of Materials Chemistry A, 2020, 8, 12097-12105.	10.3	16
21	Efficient self-assembly of heterometallic triangular necklace with strong antibacterial activity. Nature Communications, 2020, 11 , 3178 .	12.8	43
22	Biomimetic Electrodes for Flexible Organic Solar Cells with Efficiencies over 16%. Advanced Optical Materials, 2020, 8, 2000669.	7.3	47
23	The role of dipole moment in two fused-ring electron acceptor and one polymer donor based ternary organic solar cells. Materials Chemistry Frontiers, 2020, 4, 1507-1518.	5.9	22
24	Synthesis and characterization of an unexpected mechanochromic bistricyclic aromatic ene. Chinese Chemical Letters, 2020, 31, 1847-1850.	9.0	7
25	Highly Efficient Semitransparent Solar Cells with Selective Absorption and Tandem Architecture. Advanced Materials, 2019, 31, e1901683.	21.0	89
26	Radical-Induced Hierarchical Self-Assembly Involving Supramolecular Coordination Complexes in Both Solution and Solid States. Journal of the American Chemical Society, 2019, 141, 16014-16023.	13.7	62
27	Fused selenophene-thieno[3,2- <i>b</i>)thiopheneâ€"selenophene (ST)-based narrow-bandgap electron acceptor for efficient organic solar cells with small voltage loss. Chemical Communications, 2019, 55, 8258-8261.	4.1	42
28	Tailoring the Functionality of Organic Spacer Cations for Efficient and Stable Quasiâ€2D Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900221.	14.9	144
29	Over 12% Efficiency Nonfullerene Allâ€Smallâ€Molecule Organic Solar Cells with Sequentially Evolved Multilength Scale Morphologies. Advanced Materials, 2019, 31, e1807842.	21.0	272
30	AIE-active Metal-organic Coordination Complexes Based on Tetraphenylethylene Unit and Their Applications. Chinese Journal of Polymer Science (English Edition), 2019, 37, 372-382.	3.8	40
31	Dithienopicenocarbazole-Based Acceptors for Efficient Organic Solar Cells with Optoelectronic Response Over 1000 nm and an Extremely Low Energy Loss. Journal of the American Chemical Society, 2018, 140, 2054-2057.	13.7	369
32	Terthieno[3,2â€ <i>b</i>]Thiophene (6T) Based Low Bandgap Fusedâ€Ring Electron Acceptor for Highly Efficient Solar Cells with a High Shortâ€Circuit Current Density and Low Openâ€Circuit Voltage Loss. Advanced Energy Materials, 2018, 8, 1702831.	19.5	93
33	Tackling Energy Loss for Highâ€Efficiency Organic Solar Cells with Integrated Multiple Strategies. Advanced Materials, 2018, 30, e1706816.	21.0	92
34	Highly Efficient and Stable Perovskite Solar Cells Enabled by All-Crosslinked Charge-Transporting Layers. Joule, 2018, 2, 168-183.	24.0	105
35	Unexpectedly Slow Yet Efficient Picosecond to Nanosecond Photoinduced Hole-Transfer Occurs in a Polymer/Nonfullerene Acceptor Organic Photovoltaic Blend. ACS Energy Letters, 2018, 3, 2396-2403.	17.4	62
36	Diâ€Spiroâ€Based Holeâ€Transporting Materials for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800809.	19.5	79

3

#	Article	IF	Citations
37	Mapping Nonfullerene Acceptors with a Novel Wide Bandgap Polymer for High Performance Polymer Solar Cells. Advanced Energy Materials, 2018, 8, 1801214.	19.5	47
38	An Electron Acceptor with Broad Visible–NIR Absorption and Unique Solid State Packing for As ast High Performance Binary Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1802324.	14.9	116
39	Highly Efficient Organic Solar Cells Based on S,N-Heteroacene Non-Fullerene Acceptors. Chemistry of Materials, 2018, 30, 5429-5434.	6.7	194
40	Highâ€Performance Nearâ€IR Photodetector Using Lowâ€Bandgap MA _{0.5} FA _{0.5} Pb _{0.5} Sn _{0.5} 1 ₃ Perovskite. Advanced Functional Materials, 2017, 27, 1701053.	14.9	103
41	Nonâ€classical Sâ€Heteroacenes with <i>>o</i> >â€Quinoidal Conjugation and Openâ€Shell Diradical Character. Chemistry - A European Journal, 2017, 23, 8525-8531.	3.3	15
42	Design of a Highly Crystalline Low-Band Gap Fused-Ring Electron Acceptor for High-Efficiency Solar Cells with Low Energy Loss. Chemistry of Materials, 2017, 29, 8369-8376.	6.7	180
43	Highâ€Efficiency Nonfullerene Organic Solar Cells with a Parallel Tandem Configuration. Advanced Materials, 2017, 29, 1702547.	21.0	68
44	Heterocyclic Quinodimethanes. Topics in Current Chemistry, 2017, 375, 68.	5.8	26
45	Heterocyclic Quinodimethanes. Topics in Current Chemistry Collections, 2017, , 169-207.	0.5	2
46	Different Strategies for the Stabilization of Acenes and Acene Analogues. Chemical Record, 2016, 16, 1690-1700.	5.8	42
47	Benzo[4,5]cyclohepta[1,2-b]fluorene: an isomeric motif for pentacene containing linearly fused five-, six- and seven-membered rings. Chemical Science, 2016, 7, 6176-6181.	7.4	45
48	Benzo-thia-fused [n]thienoacenequinodimethanes with small to moderate diradical characters: the role of pro-aromaticity versus anti-aromaticity. Chemical Science, 2016, 7, 3036-3046.	7.4	38
49	Toward Tetraradicaloid: The Effect of Fusion Mode on Radical Character and Chemical Reactivity. Journal of the American Chemical Society, 2016, 138, 1065-1077.	13.7	103
50	Dipolar Quinoidal Acene Analogues as Stable Isoelectronic Structures of Pentacene and Nonacene. Angewandte Chemie - International Edition, 2015, 54, 14412-14416.	13.8	36
51	Pro-aromatic and anti-aromatic π-conjugated molecules: an irresistible wish to be diradicals. Chemical Society Reviews, 2015, 44, 6578-6596.	38.1	522
52	Pro-aromatic bisphenaleno-thieno[3,2-b]thiophene versus anti-aromatic bisindeno-thieno[3,2-b]thiophene: different ground-state properties and applications in field-effect transistors. Chemical Communications, 2015, 51, 13178-13180.	4.1	21
53	Thienoaceneâ€Fused Pentalenes: Syntheses, Structures, Physical Properties and Applications for Organic Fieldâ€Effect Transistors. Chemistry - A European Journal, 2015, 21, 2019-2028.	3.3	35
54	Antiaromatic bisindeno-[n]thienoacenes with small singlet biradical characters: syntheses, structures and chain length dependent physical properties. Chemical Science, 2014, 5, 4490-4503.	7.4	62

Xue-Liang Shi

#	Article	IF	CITATIONS
55	Stable 7,14-Disubstituted-5,12-Dithiapentacenes with Quinoidal Conjugation. Organic Letters, 2014, 16, 3966-3969.	4.6	44
56	Cyanated Diazatetracene Diimides with Ultrahigh Electron Affinity for <i>n</i> -Channel Field Effect Transistors. Organic Letters, 2013, 15, 1194-1197.	4.6	72
57	Solution-processable n-type and ambipolar semiconductors based on a fused cyclopentadithiophenebis(dicyanovinylene) core. Chemical Communications, 2013, 49, 7135.	4.1	25
58	Synthesis and in vitro antiprotozoal activities of 5-phenyliminobenzo[a]phenoxazine derivatives. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5804-5807.	2.2	16
59	The synthesis and third-order nonlinear optical properties of resonance Benzo[a]phenoxazinium salts. Dyes and Pigments, 2011, 88, 50-56.	3.7	16