

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5483961/publications.pdf Version: 2024-02-01

KE TANC

#	Article	IF	CITATIONS
1	Performance of a looped thermoacoustic engine with multiple loads capable of utilizing heat source below 200 °C. Applied Thermal Engineering, 2019, 148, 516-523.	6.0	16
2	Performance comparison of jet pumps with round and sharp edge of small opening in oscillatory flow. Applied Thermal Engineering, 2018, 139, 562-568.	6.0	7
3	Performance optimization of the regenerator of a looped thermoacoustic engine powered by low-grade heat. International Journal of Energy Research, 2018, 42, 4470-4480.	4.5	5
4	Effect of Gedeon streaming on thermal efficiency of a travelling-wave thermoacoustic engine. Applied Thermal Engineering, 2017, 115, 1089-1100.	6.0	18
5	Time-averaged pressure drop induced by a jet pump in oscillatory flow. Journal of the Acoustical Society of America, 2017, 142, 1730-1738.	1.1	2
6	Hydrogenation reaction characteristics and properties of its hydrides for magnetic regenerative material HoCu2. Journal of Central South University, 2016, 23, 1564-1568.	3.0	1
7	Thermodynamic characteristics during the onset and damping processes in a looped thermoacoustic prime mover. Applied Thermal Engineering, 2016, 100, 1169-1172.	6.0	14
8	Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components. Energy, 2015, 93, 828-853.	8.8	101
9	Heat transfer of laminar oscillating flow in finned heat exchanger of pulse tube refrigerator. International Journal of Heat and Mass Transfer, 2014, 70, 811-818.	4.8	32
10	Measurement of thermal expansion at low temperatures using the strain gage method. Journal of Zhejiang University: Science A, 2014, 15, 323-330.	2.4	11
11	Simulation and performance analysis of a heat transfer tube in SuperORV. Cryogenics, 2014, 61, 127-132.	1.7	31
12	Influence of compression-expansion effect on oscillating-flow heat transfer in a finned heat exchanger. Journal of Zhejiang University: Science A, 2013, 14, 427-434.	2.4	13
13	Hydrogen absorption characteristics and structural transformation during the hydrogenation process of Er3Ni. Intermetallics, 2013, 32, 162-166.	3.9	1
14	Hydrogenation Induced Change in Structures, Magnetic Properties and Specific Heats of Magnetic Regenerative Material ErNi and ErNi ₂ . Materials Transactions, 2013, 54, 363-366.	1.2	6
15	Influence of working liquid on the onset characteristics of a thermoacoustic engine with gas and liquid. Journal of Applied Physics, 2012, 112, .	2.5	11
16	Basic analysis on a thermoacoustic engine with gas and liquid. Journal of Applied Physics, 2011, 109, .	2.5	9
17	Lumped parameter model for resonant frequency estimation of a thermoacoustic engine with gas-liquid coupling oscillation. Journal of Zhejiang University: Science A, 2011, 12, 232-237.	2.4	6
18	A standing-wave thermoacoustic engine with gas-liquid coupling oscillation. Applied Physics Letters, 2009, 94, .	3.3	31

Ke Tang

#	Article	IF	CITATIONS
19	Influence of acoustic pressure amplifier dimensions on the performance of a standing-wave thermoacoustic system. Applied Thermal Engineering, 2009, 29, 950-956.	6.0	17
20	Measurement of boiling heat transfer coefficient in liquid nitrogen bath by inverse heat conduction method. Journal of Zhejiang University: Science A, 2009, 10, 691-696.	2.4	61
21	Bubble counter based on photoelectric technique for leakage detection of cryogenic valves. Journal of Zhejiang University: Science A, 2008, 9, 88-92.	2.4	5
22	Impact of load impedance on the performance of a thermoacoustic system employing acoustic pressure amplifier. Journal of Zhejiang University: Science A, 2008, 9, 79-87.	2.4	2
23	Characteristics study on the oscillation onset and damping of a traveling-wave thermoacoustic prime mover. Journal of Zhejiang University: Science A, 2008, 9, 944-949.	2.4	9
24	Thermoacoustically driven pulse tube cooler below 60K. Cryogenics, 2007, 47, 526-529.	1.7	20
25	Experimental observation on a small-scale thermoacoustic prime mover. Journal of Zhejiang University: Science A, 2007, 8, 205-209.	2.4	17
26	Influence of input acoustic power on regenerator's performance. Journal of Zhejiang University: Science A, 2007, 8, 1452-1456.	2.4	3
27	Effect of RC load on performance of thermoacoustic engine. Cryogenics, 2006, 46, 666-671.	1.7	12
28	Performance comparison of thermoacoustic engines with constant-diameter resonant tube and tapered resonant tube. Cryogenics, 2006, 46, 699-704.	1.7	23
29	Influence of resonance tube geometry shape on performance of thermoacoustic engine. Ultrasonics, 2006, 44, e1519-e1521.	3.9	15
30	Thermoacoustically driven pulse tube refrigeration below 80K by introducing an acoustic pressure amplifier. Applied Physics Letters, 2006, 89, 211915.	3.3	11
31	Influence of resonance tube length on performance of thermoacoustically driven pulse tube refrigerator. Cryogenics, 2005, 45, 185-191.	1.7	43
32	13 K thermally coupled two-stage Stirling-type pulse tube refrigerator. Science Bulletin, 2005, 50, 1814.	1.7	4
33	92 K thermoacoustically driven pulse tube refrigerator. Science Bulletin, 2004, 49, 1541.	1.7	3
34	He-H2 mixture and Er3NiHx packing for the refrigeration enhancement of pulse tube refrigerator. Science Bulletin, 2004, 49, 527-530.	1.7	2
35	A 115 K thermoacoustically driven pulse tube refrigerator with low onset temperature. Cryogenics, 2004, 44, 287-291.	1.7	13
36	Influence of buffer on resonance frequency of thermoacoustic engine. Cryogenics, 2002, 42, 223-227.	1.7	17