Michael B Hoffmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5483959/publications.pdf

Version: 2024-02-01

85 papers 2,248 citations

236925 25 h-index 289244 40 g-index

104 all docs

104 docs citations

104 times ranked 1752 citing authors

#	Article	IF	CITATIONS
1	Effect of eyelid muscle action and rubbing on telemetrically obtained intraocular pressure in patients with glaucoma with an IOP sensor implant. British Journal of Ophthalmology, 2023, 107, 1425-1431.	3.9	5
2	Structural changes to primary visual cortex in the congenital absence of cone input in achromatopsia. Neurolmage: Clinical, 2022, 33, 102925.	2.7	9
3	Rapid Campimetry—A Novel Screening Method for Glaucoma Diagnosis. Journal of Clinical Medicine, 2022, 11, 2156.	2.4	1
4	VEP estimation of visual acuity: a systematic review. Documenta Ophthalmologica, 2021, 142, 25-74.	2.2	57
5	Use of a novel telemetric sensor to study interactions of intraocular pressure and ganglion-cell function in glaucoma. British Journal of Ophthalmology, 2021, 105, 661-668.	3.9	6
6	ISCEV extended protocol for VEP methods of estimation of visual acuity. Documenta Ophthalmologica, 2021, 142, 17-24.	2.2	33
7	Structure–Function Relationship of Retinal Ganglion Cells in Multiple Sclerosis. International Journal of Molecular Sciences, 2021, 22, 3419.	4.1	5
8	Non-invasive electrophysiology in glaucoma, structure and function—a review. Eye, 2021, 35, 2374-2385.	2.1	7
9	Functional Dynamics of Deafferented Early Visual Cortex in Glaucoma. Frontiers in Neuroscience, 2021, 15, 653632.	2.8	3
10	Mapping Visual Field Defects With fMRI – Impact of Approach and Experimental Conditions. Frontiers in Neuroscience, 2021, 15, 745886.	2.8	5
11	ISCEV standard for clinical multifocal electroretinography (mfERG) (2021 update). Documenta Ophthalmologica, 2021, 142, 5-16.	2.2	81
12	Tracking the visual systemâ€"from the optic chiasm to primary visual cortex. Zeitschrift Fur Epileptologie, 2021, 34, 57-66.	0.7	4
13	Deep Learning-Based Detection of Malformed Optic Chiasms From MRI Images. Frontiers in Neuroscience, 2021, 15, 755785.	2.8	6
14	Structural Differences Across Multiple Visual Cortical Regions in the Absence of Cone Function in Congenital Achromatopsia. Frontiers in Neuroscience, 2021, 15, 718958.	2.8	7
15	CHIASM, the human brain albinism and achiasma MRI dataset. Scientific Data, 2021, 8, 308.	5.3	6
16	Determination of scotopic and photopic conventional visual acuity and hyperacuity. Graefe's Archive for Clinical and Experimental Ophthalmology, 2020, 258, 129-135.	1.9	7
17	Micro-probing enables fine-grained mapping of neuronal populations using fMRI. NeuroImage, 2020, 209, 116423.	4.2	22
18	Foveal pRF properties in the visual cortex depend on the extent of stimulated visual field. NeuroImage, 2020, 222, 117250.	4.2	14

#	Article	IF	CITATIONS
19	Combined Multi-Modal Assessment of Glaucomatous Damage With Electroretinography and Optical Coherence Tomography/Angiography. Translational Vision Science and Technology, 2020, 9, 7.	2.2	13
20	Preserved Contextual Cueing in Realistic Scenes in Patients with Age-Related Macular Degeneration. Brain Sciences, 2020, 10, 941.	2.3	1
21	Diagnostic performance of multifocal photopic negative response, pattern electroretinogram and optical coherence tomography in glaucoma. Experimental Eye Research, 2020, 200, 108242.	2.6	11
22	MS optic neuritis-induced long-term structural changes within the visual pathway. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	32
23	Triple visual hemifield maps in a case of optic chiasm hypoplasia. Neurolmage, 2020, 215, 116822.	4.2	10
24	Quantifying nerve decussation abnormalities in the optic chiasm. NeuroImage: Clinical, 2019, 24, 102055.	2.7	19
25	Population receptive field and connectivity properties of the early visual cortex in human albinism. Neurolmage, 2019, 202, 116105.	4.2	21
26	Scotopic multifocal visual evoked potentials. Clinical Neurophysiology, 2019, 130, 379-387.	1.5	0
27	Interocular transfer of visual memory – Influence of visual impairment and abnormalities of the optic chiasm. Neuropsychologia, 2019, 129, 171-178.	1.6	3
28	Altered organization of the visual cortex in FHONDA syndrome. NeuroImage, 2019, 190, 224-231.	4.2	20
29	Retinal conduction speed analysis reveals different origins of the P50 and N95 components of the (multifocal) pattern electroretinogram. Experimental Eye Research, 2018, 169, 48-53.	2.6	23
30	Calculation and plotting of retinal nerve fiber paths based on Jansonius et al. 2009/2012 with an R program. Data in Brief, 2018, 18, 66-68.	1.0	0
31	VEP-based acuity assessment in low vision. Documenta Ophthalmologica, 2017, 135, 209-218.	2.2	14
32	Heterogenous migraine aura symptoms correlate with visual cortex functional magnetic resonance imaging responses. Annals of Neurology, 2017, 82, 925-939.	5.3	41
33	False fMRI activation after motion correction. Human Brain Mapping, 2017, 38, 4497-4510.	3.6	12
34	Absence of directionâ€specific crossâ€modal visual–auditory adaptation in motionâ€onset eventâ€related potentials. European Journal of Neuroscience, 2016, 43, 66-77.	2.6	3
35	A studyforrest extension, retinotopic mapping and localization of higher visual areas. Scientific Data, 2016, 3, 160093.	5.3	48
36	Feasibility study: 7ÂT MRI in giant cell arteritis. Graefe's Archive for Clinical and Experimental Ophthalmology, 2016, 254, 1111-1116.	1.9	15

3

#	Article	IF	Citations
37	Visual memory for objects following foveal vision loss Journal of Experimental Psychology: Learning Memory and Cognition, 2015, 41, 1471-1484.	0.9	8
38	Quantitative assessment of visual cortex function with fMRI at 7 Teslaâ€"testâ€"retest variability. Frontiers in Human Neuroscience, 2015, 9, 477.	2.0	6
39	Visual Pathways in Humans With Ephrin-B1 Deficiency Associated With the Cranio-Fronto-Nasal Syndrome., 2015, 56, 7427.		9
40	Congenital visual pathway abnormalities: a window onto cortical stability and plasticity. Trends in Neurosciences, 2015, 38, 55-65.	8.6	61
41	Structural gray matter abnormalities in migraine relate to headache lateralization, but not aura. Cephalalgia, 2015, 35, 3-9.	3.9	30
42	Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation. PLoS ONE, 2015, 10, e0126477.	2.5	23
43	Prediction of higher visual function in macular degeneration with multifocal electroretinogram and multifocal visual evoked potential. Ophthalmic and Physiological Optics, 2014, 34, 540-551.	2.0	2
44	Interhemispheric differences of fMRI responses to visual stimuli in patients with sideâ€fixed migraine aura. Human Brain Mapping, 2014, 35, 2714-2723.	3.6	57
45	Differential effects of head-mounted displays on visual performance. Ergonomics, 2014, 57, 1-11.	2.1	25
46	Case Report: Practicability of functionally based tractography of the optic radiation during presurgical epilepsy work up. Neuroscience Letters, 2014, 568, 56-61.	2.1	11
47	Impact of chiasma opticum malformations on the organization of the human ventral visual cortex. Human Brain Mapping, 2014, 35, 5093-5105.	3.6	28
48	Changes in brain morphology in albinism reflect reduced visual acuity. Cortex, 2014, 56, 64-72.	2.4	45
49	Differential effects of optic media opacities on simultaneous multifocal pattern electroretinograms and visual evoked potentials. Clinical Neurophysiology, 2014, 125, 2418-2426.	1.5	6
50	Differential effects of optic media opacities on mfERGs and mfVEPs. Clinical Neurophysiology, 2013, 124, 1225-1231.	1.5	5
51	Contextual cueing impairment in patients with age-related macular degeneration. Journal of Vision, 2013, 13, 28-28.	0.3	34
52	Directionâ€specific adaptation of motionâ€onset auditory evoked potentials. European Journal of Neuroscience, 2013, 38, 2557-2565.	2.6	6
53	Effect of blue-light filtering on multifocal visual-evoked potentials. Journal of Cataract and Refractive Surgery, 2012, 38, 85-91.	1.5	5
54	Plasticity and Stability of the Visual System in Human Achiasma. Neuron, 2012, 75, 393-401.	8.1	85

#	Article	IF	Citations
55	Cortical plasticity in the face of congenitally altered input into V1. Cortex, 2012, 48, 1362-1365.	2.4	21
56	Optic Nerve Projections in Patients with Primary Ciliary Dyskinesia., 2011, 52, 4617.		10
57	Motion-onset auditory-evoked potentials critically depend on history. Experimental Brain Research, 2010, 203, 159-168.	1.5	12
58	Self-organisation in the human visual systemâ€"Visuo-motor processing with congenitally abnormal V1 input. Neuropsychologia, 2010, 48, 3834-3845.	1.6	16
59	Minor effect of blue-light filtering on multifocal electroretinograms. Journal of Cataract and Refractive Surgery, 2010, 36, 1692-1699.	1.5	11
60	Visuo-motor integration in humans: Cortical patterns of response lateralisation and functional connectivity. Neuropsychologia, 2009, 47, 1313-1322.	1.6	10
61	Retinotopic mapping of the human visual cortex at a magnetic field strength of 7T. Clinical Neurophysiology, 2009, 120, 108-116.	1.5	52
62	Slow pattern-reversal stimulation facilitates the assessment of retinal function with multifocal recordings. Clinical Neurophysiology, 2008, 119, 409-417.	1.5	19
63	Update on the Pattern Electroretinogram in Glaucoma. Optometry and Vision Science, 2008, 85, 386-395.	1.2	128
64	Identifying Human Albinism: A Comparison of VEP and fMRI. , 2008, 49, 238.		48
65	Multifocal Visual Evoked Potentials Reveal Normal Optic Nerve Projections in Human Carriers of Oculocutaneous Albinism Type 1a., 2008, 49, 2756.		12
66	Investigating Visual Function with Multifocal Visual Evoked Potentials., 2008,, 139-159.		9
67	Perceptual relevance of abnormal visual field representations: static visual field perimetry in human albinism. British Journal of Ophthalmology, 2007, 91, 509-513.	3.9	29
68	Pigmentation predicts the shift in the line of decussation in humans with albinism. European Journal of Neuroscience, 2007, 25, 503-511.	2.6	47
69	Assessment of Cortical Visual Field Representations with Multifocal VEPs in Control Subjects, Patients with Albinism, and Female Carriers of Ocular Albinism., 2006, 47, 3195.		18
70	Retinal abnormalities in human albinism translate into a reduction of grey matter in the occipital cortex. European Journal of Neuroscience, 2005, 22, 2475-2480.	2.6	56
71	The influence of defocus on multifocal visual evoked potentials. Graefe's Archive for Clinical and Experimental Ophthalmology, 2005, 243, 38-42.	1.9	19
72	Misrouting of the Optic Nerves in Albinism: Estimation of the Extent with Visual Evoked Potentials., 2005, 46, 3892.		68

#	Article	IF	CITATIONS
73	Simulated nystagmus reduces pattern-reversal more strongly than pattern-onset multifocal visual evoked potentials. Clinical Neurophysiology, 2005, 116, 1723-1732.	1.5	12
74	The Role of Spared Calcarine Cortex and Lateral Occipital Cortex in the Responses of Human Hemianopes to Visual Motion. Journal of Cognitive Neuroscience, 2004, 16, 204-218.	2.3	46
75	Electrophysiological evidence for independent speed channels in human motion processing. Journal of Vision, 2004, 4, 6-6.	0.3	30
76	Simulated nystagmus suppresses pattern-reversal but not pattern-onset visual evoked potentials. Clinical Neurophysiology, 2004, 115, 2659-2665.	1.5	28
77	Pattern-onset stimulation boosts central multifocal VEP responses. Journal of Vision, 2003, 3, 4.	0.3	36
78	Organization of the Visual Cortex in Human Albinism. Journal of Neuroscience, 2003, 23, 8921-8930.	3.6	131
79	The distinction between eye and object motion is reflected by the motion-onset visual evoked potential. Experimental Brain Research, 2002, 144, 141-151.	1.5	21
80	Abnormal visual projection in a human albino studied with functional magnetic resonance imaging and visual evoked potentials. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 72, 523-6.	1.9	41
81	Directional tuning of human motion adaptation as reflected by the motion VEP. Vision Research, 2001, 41, 2187-2194.	1.4	65
82	Abnormal retinotopic representations in human visual cortex revealed by fMRI. Acta Psychologica, 2001, 107, 229-247.	1.5	64
83	Visual motion detection in man is governed by non-retinal mechanisms. Vision Research, 2000, 40, 2379-2385.	1.4	36
84	Time course of motion adaptation: Motion-onset visual evoked potentials and subjective estimates. Vision Research, 1999, 39, 437-444.	1.4	60
85	Melatonin and deprivation myopia in chickens. Neurochemistry International, 1996, 28, 95-107.	3.8	25