Heejung Chun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5483084/publications.pdf

Version: 2024-02-01

		567281	8	839539
18	1,591	15		18
papers	citations	h-index		g-index
22	22	22		2393
22	22	22		2373
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Astrocytes Render Memory Flexible by Releasing D-Serine and Regulating NMDA Receptor Tone in the Hippocampus. Biological Psychiatry, 2022, 91, 740-752.	1.3	30
2	Inhibition of monoamine oxidase B prevents reactive astrogliosis and scar formation in stab wound injury model. Glia, 2022, 70, 354-367.	4.9	20
3	Longitudinal intravital imaging of cerebral microinfarction reveals a dynamic astrocyte reaction leading to glial scar formation. Glia, 2022, 70, 975-988.	4.9	7
4	Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer's disease via H2O2â^' production. Nature Neuroscience, 2020, 23, 1555-1566.	14.8	154
5	Dynamic Changes in the Bridging Collaterals of the Basal Ganglia Circuitry Control Stress-Related Behaviors in Mice. Molecules and Cells, 2020, 43, 360-372.	2.6	0
6	Activation of Astrocytic $\hat{l}^{1}\!\!/\!\!4$ -Opioid Receptor Causes Conditioned Place Preference. Cell Reports, 2019, 28, 1154-1166.e5.	6.4	71
7	Newly developed reversible MAO-B inhibitor circumvents the shortcomings of irreversible inhibitors in Alzheimer's disease. Science Advances, 2019, 5, eaav0316.	10.3	130
8	Astrocytic water channel aquaporin-4 modulates brain plasticity in both mice and humans: a potential gliogenetic mechanism underlying language-associated learning. Molecular Psychiatry, 2018, 23, 1021-1030.	7.9	27
9	Reactive astrocytes in Alzheimer's disease: A double-edged sword. Neuroscience Research, 2018, 126, 44-52.	1.9	129
10	Astrocyte Specificity and Coverage of hGFAP-CreERT2 [Tg(GFAP-Cre/ERT2)13Kdmc] Mouse Line in Various Brain Regions. Experimental Neurobiology, 2018, 27, 508-525.	1.6	23
11	Elucidating the Interactive Roles of Glia in Alzheimer's Disease Using Established and Newly Developed Experimental Models. Frontiers in Neurology, 2018, 9, 797.	2.4	44
12	Astrocytic proBDNF and Tonic GABA Distinguish Active versus Reactive Astrocytes in Hippocampus. Experimental Neurobiology, 2018, 27, 155-170.	1.6	39
13	Functional Characterization of Resting and Adenovirus-Induced Reactive Astrocytes in Three-Dimensional Culture. Experimental Neurobiology, 2017, 26, 158-167.	1.6	15
14	The Brain-Enriched MicroRNA miR-9-3p Regulates Synaptic Plasticity and Memory. Journal of Neuroscience, 2016, 36, 8641-8652.	3.6	82
15	Ultra-sensitive detection of brain-derived neurotrophic factor (BDNF) in the brain of freely moving mice using an interdigitated microelectrode (IME) biosensor. Scientific Reports, 2016, 6, 33694.	3.3	24
16	Channel-mediated astrocytic glutamate modulates hippocampal synaptic plasticity by activating postsynaptic NMDA receptors. Molecular Brain, 2015, 8, 7.	2.6	64
17	Glial GABA, synthesized by monoamine oxidase B, mediates tonic inhibition. Journal of Physiology, 2014, 592, 4951-4968.	2.9	145
18	GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease. Nature Medicine, 2014, 20, 886-896.	30.7	577