Marcin Jaraczewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5483060/publications.pdf

Version: 2024-02-01

20 papers

55 citations

1937685 4 h-index 1872680 6 g-index

20 all docs

 $\begin{array}{c} 20 \\ \\ \text{docs citations} \end{array}$

20 times ranked 20 citing authors

#	Article	IF	CITATIONS
1	On Simplified Calculations of Leakage Inductances of Power Transformers. Energies, 2020, 13, 4952.	3.1	11
2	The L1-impulse method as an alternative to the Fourier series in the power theory of continuous time systems. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2009, 57, .	0.8	6
3	The method of current measurement in the rotor cage bars of prototype induction motor with the use of Rogowski coils. , 2015, , .		5
4	The low-frequency measuring method and signal processing application in electrical machines and electric devices monitoring. , $2016, \dots$		5
5	Leakage Inductances of Transformers at Arbitrarily Located Windings. Energies, 2020, 13, 6464.	3.1	5
6	New Parseval's inactive-power factor of a two-terminal network. International Journal of Electrical Power and Energy Systems, 2019, 104, 222-229.	5.5	4
7	Application of discrete differential operators of periodic functions to solve 1D boundary-value problems. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2020, 39, 885-897.	0.9	4
8	Reactive compensator synthesis in time-domain. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2012, 60, 119-124.	0.8	3
9	Application of L1-impulse method to the optimization problems in power theory. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2010, 58, .	0.8	3
10	Low-Frequency Signal Sampling Method Implemented in a PLC Controller Dedicated to Applications in the Monitoring of Selected Electrical Devices. Electronics (Switzerland), 2021, 10, 442.	3.1	2
11	Novel ultrasonic distance measuring system based on correlation method. Archives of Electrical Engineering, 2014, 63, 385-392.	1.0	1
12	New discrete reactive power factor definition of the two-terminal network. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2017, 65, 369-373.	0.8	1
13	Low-Frequency Sampling Method For Power Measurement On A Compact PLC Controller - Error Elimination Due To Serial Sampling. , 2018, , .		1
14	Numerical Tests of Novel Finite Difference Operator for Solving 1D Boundary-Value Problems. , 2019, , .		1
15	UkoÅ>ne liczby zespolone w opisie obwodów elektrycznych przy sinusoidalnych i prawie okresowych przebiegach prądów i napięć. Przeglad Elektrotechniczny, 2016, 1, 174-177.	0.2	1
16	Reaktancyjne kompensatory czw \tilde{A}^3 rnikowe dla przebieg \tilde{A}^3 w monoharmonicznych. Przeglad Elektrotechniczny, 2017, 1, 46-49.	0.2	1
17	Solving 2D boundary-value problems using discrete partial differential operators. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2022, 41, 703-719.	0.9	1
18	Error Reduction of The Low-Frequency Sampling Method for Measuring The Current, Voltage And Power of a Cage Induction Motor., 2018, , .		0

#	Article	IF	CITATIONS
19	Nowy wska $\mathring{\text{A}}^{\text{e}}$ nik Parsevala mocy nieczynnej dw $\tilde{\text{A}}^{\text{3}}$ jnika elektrycznego. Przeglad Elektrotechniczny, 2018, 1, 107-111.	0.2	O
20	An Actively Controlled Two-Terminal Network Implementing a Given Linear Nonconvolution-Type Immittance Operator. Energies, 2022, 15, 4385.	3.1	0