Tae-Woo Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5482355/publications.pdf

Version: 2024-02-01

299 papers 25,288 citations

9264 74 h-index 7348 152 g-index

307 all docs

307 docs citations

times ranked

307

23721 citing authors

#	Article	IF	Citations
1	Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350, 1222-1225.	12.6	2,440
2	Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nature Photonics, 2012, 6, 105-110.	31.4	1,272
3	Multicolored Organic/Inorganic Hybrid Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2015, 27, 1248-1254.	21.0	1,077
4	A bioinspired flexible organic artificial afferent nerve. Science, 2018, 360, 998-1003.	12.6	982
5	Perovskites for Next-Generation Optical Sources. Chemical Reviews, 2019, 119, 7444-7477.	47.7	640
6	Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nature Photonics, 2021, 15, 148-155.	31.4	590
7	Solution processable small molecules for organic light-emitting diodes. Journal of Materials Chemistry, 2010, 20, 6392.	6.7	555
8	Efficient Visible Quasiâ€2D Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2016, 28, 7515-7520.	21.0	554
9	Metal halide perovskite light emitters. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11694-11702.	7.1	465
10	Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy and Environmental Science, 2016, 9, 12-30.	30.8	449
11	Planar CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate. Advanced Materials, 2015, 27, 3424-3430.	21.0	435
12	Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Science Advances, 2016, 2, e1501326.	10.3	406
13	Improving the Stability of Metal Halide Perovskite Materials and Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, e1704587.	21.0	368
14	Stretchable organic optoelectronic sensorimotor synapse. Science Advances, 2018, 4, eaat7387.	10.3	359
15	Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17143-17148.	7.1	321
16	Boosting the Power Conversion Efficiency of Perovskite Solar Cells Using Selfâ€Organized Polymeric Hole Extraction Layers with High Work Function. Advanced Materials, 2014, 26, 6461-6466.	21.0	321
17	Organometal Halide Perovskite Artificial Synapses. Advanced Materials, 2016, 28, 5916-5922.	21.0	319
18	Highly Efficient Light-Emitting Diodes of Colloidal Metal–Halide Perovskite Nanocrystals beyond Quantum Size. ACS Nano, 2017, 11, 6586-6593.	14.6	310

#	Article	IF	CITATIONS
19	Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics. Advanced Materials, 2020, 32, e1903558.	21.0	289
20	Large-scale organic nanowire lithography and electronics. Nature Communications, 2013, 4, 1773.	12.8	262
21	Electroluminescence from Graphene Quantum Dots Prepared by Amidative Cutting of Tattered Graphite. Nano Letters, 2014, 14, 1306-1311.	9.1	260
22	Threeâ€Dimensional Bulk Heterojunction Morphology for Achieving High Internal Quantum Efficiency in Polymer Solar Cells. Advanced Functional Materials, 2009, 19, 2398-2406.	14.9	236
23	Retinaâ€Inspired Carbon Nitrideâ€Based Photonic Synapses for Selective Detection of UV Light. Advanced Materials, 2020, 32, e1906899.	21.0	222
24	Ultrapure Green Light-Emitting Diodes Using Two-Dimensional Formamidinium Perovskites: Achieving Recommendation 2020 Color Coordinates. Nano Letters, 2017, 17, 5277-5284.	9.1	221
25	Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells. Chemical Communications, 2008, , 2867.	4.1	218
26	Universal energy level tailoring of self-organized hole extraction layers in organic solar cells and organic–inorganic hybrid perovskite solar cells. Energy and Environmental Science, 2016, 9, 932-939.	30.8	218
27	Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics. Accounts of Chemical Research, 2019, 52, 964-974.	15.6	213
28	Efficient Flexible Organic/Inorganic Hybrid Perovskite Lightâ€Emitting Diodes Based on Graphene Anode. Advanced Materials, 2017, 29, 1605587.	21.0	200
29	Polyethylene Imine as an Ideal Interlayer for Highly Efficient Inverted Polymer Lightâ€Emitting Diodes. Advanced Functional Materials, 2014, 24, 3808-3814.	14.9	196
30	High efficiency perovskite light-emitting diodes of ligand-engineered colloidal formamidinium lead bromide nanoparticles. Nano Energy, 2017, 38, 51-58.	16.0	195
31	Graphene-based flexible electronic devices. Materials Science and Engineering Reports, 2017, 118, 1-43.	31.8	194
32	Highâ€Efficiency Solutionâ€Processed Inorganic Metal Halide Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2017, 29, 1700579.	21.0	193
33	Subwavelength light bending by metal slit structures. Optics Express, 2005, 13, 9652.	3.4	185
34	Characteristics of Solutionâ€Processed Smallâ€Molecule Organic Films and Lightâ€Emitting Diodes Compared with their Vacuumâ€Deposited Counterparts. Advanced Functional Materials, 2009, 19, 1625-1630.	14.9	176
35	High-efficiency stacked white organic light-emitting diodes. Applied Physics Letters, 2008, 92, .	3.3	169
36	Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes. Nature Communications, 2016, 7, 11791.	12.8	163

#	Article	IF	CITATIONS
37	A roll-to-roll welding process for planarized silver nanowire electrodes. Nanoscale, 2014, 6, 11828-11834.	5.6	161
38	Graphenes Converted from Polymers. Journal of Physical Chemistry Letters, 2011, 2, 493-497.	4.6	158
39	Synthesis and Nonvolatile Memory Behavior of Redox-Active Conjugated Polymer-Containing Ferrocene. Journal of the American Chemical Society, 2007, 129, 9842-9843.	13.7	154
40	Control of the Surface Composition of a Conductingâ€Polymer Complex Film to Tune the Work Function. Advanced Functional Materials, 2008, 18, 2246-2252.	14.9	151
41	Synthesis of transparent mesoporous tungsten trioxide films with enhanced photoelectrochemical response: application to unassisted solar water splitting. Energy and Environmental Science, 2011, 4, 1465.	30.8	142
42	Highly Efficient pâ€iâ€n and Tandem Organic Lightâ€Emitting Devices Using an Airâ€Stable and Lowâ€Temperatureâ€Evaporable Metal Azide as an nâ€Dopant. Advanced Functional Materials, 2010, 20, 1797-1802.	14.9	136
43	Highly Efficient, Simplified, Solutionâ€Processed Thermally Activated Delayedâ€Fluorescence Organic Lightâ€Emitting Diodes. Advanced Materials, 2016, 28, 734-741.	21.0	133
44	Flexible and Transparent Metallic Grid Electrodes Prepared by Evaporative Assembly. ACS Applied Materials & Distribution (2014), 6, 12380-12387.	8.0	128
45	Recent progress in fabrication techniques of graphene nanoribbons. Materials Horizons, 2016, 3, 186-207.	12.2	127
46	Organic light-emitting diodes formed by soft contact lamination. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 429-433.	7.1	126
47	Ultrahigh-efficiency solution-processed simplified small-molecule organic light-emitting diodes using universal host materials. Science Advances, 2016, 2, e1601428.	10.3	122
48	A 2D Titanium Carbide MXene Flexible Electrode for Highâ€Efficiency Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e2000919.	21.0	122
49	Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: From artificial neural networks to neuro-prosthetics. Nano Energy, 2019, 65, 104035.	16.0	115
50	Dramatic Substituent Effects on the Photoluminescence of Boron Complexes of 2â€(Benzothiazolâ€⊋â€yl)phenols. Chemistry - A European Journal, 2012, 18, 9886-9893.	3.3	109
51	High-Efficiency Polycrystalline Perovskite Light-Emitting Diodes Based on Mixed Cations. ACS Nano, 2018, 12, 2883-2892.	14.6	109
52	Dimensionality Dependent Plasticity in Halide Perovskite Artificial Synapses for Neuromorphic Computing. Advanced Electronic Materials, 2019, 5, 1900008.	5.1	109
53	Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot. Nature Communications, 2020, 11, 3378.	12.8	108
54	Silver-Based Nanoparticles for Surface Plasmon Resonance in Organic Optoelectronics. Particle and Particle Systems Characterization, 2015, 32, 164-175.	2.3	106

#	Article	IF	Citations
55	Strategies to Improve Luminescence Efficiency of Metalâ€Halide Perovskites and Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1804595.	21.0	102
56	Characterization of stability and challenges to improve lifetime in perovskite LEDs. Nature Photonics, 2021, 15, 630-634.	31.4	101
57	Unravelling additive-based nanocrystal pinning for high efficiency organic-inorganic halide perovskite light-emitting diodes. Nano Energy, 2017, 42, 157-165.	16.0	98
58	Organic Nanowire Fabrication and Device Applications. Small, 2015, 11, 45-62.	10.0	97
59	Extremely stable graphene electrodes doped with macromolecular acid. Nature Communications, 2018, 9, 2037.	12.8	96
60	Soluble Selfâ€Doped Conducting Polymer Compositions with Tunable Work Function as Hole Injection/Extraction Layers in Organic Optoelectronics. Angewandte Chemie - International Edition, 2011, 50, 6274-6277.	13.8	95
61	Efficient Ruddlesden–Popper Perovskite Lightâ€Emitting Diodes with Randomly Oriented Nanocrystals. Advanced Functional Materials, 2019, 29, 1901225.	14.9	95
62	Selfâ€Doped Conducting Polymer as a Holeâ€Extraction Layer in Organic–Inorganic Hybrid Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1500678.	3.7	93
63	Roles of Interlayers in Efficient Organic Photovoltaic Devices. Macromolecular Rapid Communications, 2010, 31, 2095-2108.	3.9	92
64	Molecularly Controlled Interfacial Layer Strategy Toward Highly Efficient Simple‣tructured Organic Lightâ€Emitting Diodes. Advanced Materials, 2012, 24, 1487-1493.	21.0	92
65	Ultrathin Organic Solar Cells with Graphene Doped by Ferroelectric Polarization. ACS Applied Materials & Samp; Interfaces, 2014, 6, 3299-3304.	8.0	91
66	Ultrasensitive artificial synapse based on conjugated polyelectrolyte. Nano Energy, 2018, 48, 575-581.	16.0	85
67	Waterâ€Soluble Polyfluorenes as an Electron Injecting Layer in PLEDs for Extremely High Quantum Efficiency. Advanced Materials, 2008, 20, 1624-1629.	21.0	83
68	Electrospun Organic Nanofiber Electronics and Photonics. Macromolecular Materials and Engineering, 2013, 298, 475-486.	3.6	83
69	Deformable Organic Nanowire Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, 1704401.	21.0	82
70	Organic solar cells using CVD-grown graphene electrodes. Nanotechnology, 2014, 25, 014012.	2.6	81
71	Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nature Nanotechnology, 2022, 17, 590-597.	31.5	81
72	Organic light emitting board for dynamic interactive display. Nature Communications, 2017, 8, 14964.	12.8	80

#	Article	IF	Citations
73	Organic electronic synapses with low energy consumption. Joule, 2021, 5, 794-810.	24.0	79
74	Versatile pâ€Type Chemical Doping to Achieve Ideal Flexible Graphene Electrodes. Angewandte Chemie - International Edition, 2016, 55, 6197-6201.	13.8	78
75	Laminated Graphene Films for Flexible Transparent Thin Film Encapsulation. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 14725-14731.	8.0	78
76	Efficient Perovskite Lightâ€Emitting Diodes Using Polycrystalline Core–Shellâ€Mimicked Nanograins. Advanced Functional Materials, 2019, 29, 1902017.	14.9	76
77	Hole-injecting conducting-polymer compositions for highly efficient and stable organic light-emitting diodes. Applied Physics Letters, 2005, 87, 231106.	3.3	75
78	High Color-Purity Green, Orange, and Red Light-Emitting Diodes Based on Chemically Functionalized Graphene Quantum Dots. Scientific Reports, 2016, 6, 24205.	3.3	72
79	Versatile Metal Nanowiring Platform for Largeâ€Scale Nano―and Optoâ€Electronic Devices. Advanced Materials, 2016, 28, 9109-9116.	21.0	69
80	AC Field-Induced Polymer Electroluminescence with Single Wall Carbon Nanotubes. Nano Letters, 2011, 11, 966-972.	9.1	68
81	Nâ€Doped Graphene Fieldâ€Effect Transistors with Enhanced Electron Mobility and Airâ€Stability. Small, 2014, 10, 1999-2005.	10.0	68
82	Boosting Efficiency in Polycrystalline Metal Halide Perovskite Light-Emitting Diodes. ACS Energy Letters, 2019, 4, 1134-1149.	17.4	68
83	Evidence of band bending observed by electroabsorption studies in polymer light emitting device with ionomer/Al or LiF/Al cathode. Applied Physics Letters, 2000, 76, 2152-2154.	3.3	65
84	Hole-transporting interlayers for improving the device lifetime in the polymer light-emitting diodes. Applied Physics Letters, 2006, 89, 123505.	3.3	64
85	Charge carrier recombination and ion migration in metal-halide perovskite nanoparticle films for efficient light-emitting diodes. Nano Energy, 2018, 52, 329-335.	16.0	64
86	Conducting Polymers as Anode Buffer Materials in Organic and Perovskite Optoelectronics. Advanced Optical Materials, 2017, 5, 1600512.	7.3	63
87	Efficient Photoluminescence and Electroluminescence from Environmentally Stable Polymer/Clay Nanocomposites. Chemistry of Materials, 2001, 13, 2217-2222.	6.7	62
88	Seeing Molecules by Eye: Surface Plasmon Resonance Imaging at Visible Wavelengths with High Spatial Resolution and Submonolayer Sensitivity. Angewandte Chemie - International Edition, 2008, 47, 5013-5017.	13.8	62
89	Controlled TiO[sub 2] Nanotube Arrays as an Active Material for High Power Energy-Storage Devices. Journal of the Electrochemical Society, 2009, 156, A584.	2.9	62
90	Hybrid Perovskites: Effective Crystal Growth for Optoelectronic Applications. Advanced Energy Materials, 2017, 7, 1602596.	19.5	62

#	Article	IF	Citations
91	Energy level alignment of dipolar interface layer in organic and hybrid perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 2915-2924.	5.5	62
92	Exciton and lattice dynamics in low-temperature processable CsPbBr3 thin-films. Materials Today Energy, 2018, 7, 199-207.	4.7	62
93	Flexible Lamination Encapsulation. Advanced Materials, 2015, 27, 4308-4314.	21.0	61
94	N,Sâ€Induced Electronic States of Carbon Nanodots Toward White Electroluminescence. Advanced Optical Materials, 2016, 4, 276-284.	7.3	60
95	Universal high work function flexible anode for simplified ITO-free organic and perovskite light-emitting diodes with ultra-high efficiency. NPG Asia Materials, 2017, 9, e411-e411.	7.9	60
96	Rapid Fabrication of Designable Largeâ€Scale Aligned Graphene Nanoribbons by Electroâ€hydrodynamic Nanowire Lithography. Advanced Materials, 2014, 26, 3459-3464.	21.0	59
97	Elucidating the Crucial Role of Hole Injection Layer in Degradation of Organic Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2015, 7, 3117-3125.	8.0	59
98	Polymer light-emitting devices using ionomers as an electron injecting and hole blocking layer. Journal of Applied Physics, 2001, 90, 2128-2134.	2.5	58
99	Fine Control of Perovskite Crystallization and Reducing Luminescence Quenching Using Selfâ€Doped Polyaniline Hole Injection Layer for Efficient Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2019, 29, 1807535.	14.9	58
100	Ultrashort laser pulse doubling by metal-halide perovskite multiple quantum wells. Nature Communications, 2020, 11, 3361.	12.8	57
101	Approaching ultimate flexible organic light-emitting diodes using a graphene anode. NPG Asia Materials, 2016, 8, e303-e303.	7.9	55
102	Nonâ€Volatile Ferroelectric Memory with Positionâ€Addressable Polymer Semiconducting Nanowire. Small, 2014, 10, 1976-1984.	10.0	54
103	Organic and perovskite memristors for neuromorphic computing. Organic Electronics, 2021, 98, 106301.	2.6	54
104	Effect of electrical annealing on the luminous efficiency of thermally annealed polymer light-emitting diodes. Applied Physics Letters, 2000, 77, 3334-3336.	3.3	53
105	Individually Positionâ€Addressable Metalâ€Nanofiber Electrodes for Largeâ€Area Electronics. Advanced Materials, 2014, 26, 8010-8016.	21.0	53
106	Characterizing the Efficiency of Perovskite Solar Cells and Light-Emitting Diodes. Joule, 2020, 4, 1206-1235.	24.0	53
107	Extremely Stable Luminescent Crosslinked Perovskite Nanoparticles under Harsh Environments over 1.5 Years. Advanced Materials, 2021, 33, e2005255.	21.0	53
108	Room-Temperature-Processable Wire-Templated Nanoelectrodes for Flexible and Transparent All-Wire Electronics. ACS Nano, 2017, 11, 3681-3689.	14.6	52

#	Article	IF	Citations
109	Water Passivation of Perovskite Nanocrystals Enables Airâ€Stable Intrinsically Stretchable Colorâ€Conversion Layers for Stretchable Displays. Advanced Materials, 2020, 32, e2001989.	21.0	51
110	Achieving Microstructureâ€Controlled Synaptic Plasticity and Longâ€Term Retention in Ionâ€Gelâ€Gated Organic Synaptic Transistors. Advanced Intelligent Systems, 2020, 2, 2000012.	6.1	51
111	Extremely Bright Full Color Alternating Current Electroluminescence of Solution-Blended Fluorescent Polymers with Self-Assembled Block Copolymer Micelles. ACS Nano, 2013, 7, 10809-10817.	14.6	50
112	Electrospun polymer/quantum dot composite fibers as down conversion phosphor layers for white light-emitting diodes. RSC Advances, 2014, 4, 11585.	3.6	50
113	Polyanilineâ€Based Conducting Polymer Compositions with a High Work Function for Holeâ€Injection Layers in Organic Lightâ€Emitting Diodes: Formation of Ohmic Contacts. ChemSusChem, 2011, 4, 363-368.	6.8	49
114	Device architecture for efficient, low-hysteresis flexible perovskite solar cells: Replacing TiO2 with C60 assisted by polyethylenimine ethoxylated interfacial layers. Solar Energy Materials and Solar Cells, 2017, 161, 338-346.	6.2	49
115	High-efficiency polymer light-emitting devices using organic salts: A multilayer structure to improve light-emitting electrochemical cells. Applied Physics Letters, 2002, 81, 214-216.	3.3	46
116	Onâ€Fabrication Solidâ€State Nâ€Doping of Graphene by an Electronâ€Transporting Metal Oxide Layer for Efficient Inverted Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1600172.	19.5	46
117	Engineering electrodes and metal halide perovskite materials for flexible/stretchable perovskite solar cells and light-emitting diodes. Energy and Environmental Science, 2021, 14, 2009-2035.	30.8	46
118	Controllable nâ€Type Doping on CVDâ€Grown Single―and Doubleâ€Layer Graphene Mixture. Advanced Materials, 2015, 27, 1619-1623.	21.0	43
119	Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering. Scientific Reports, 2014, 4, 6230.	3.3	43
120	Flexible transparent electrodes for organic light-emitting diodes. Journal of Information Display, 2015, 16, 71-84.	4.0	43
121	Synergetic Influences of Mixed-Host Emitting Layer Structures and Hole Injection Layers on Efficiency and Lifetime of Simplified Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 6152-6163.	8.0	43
122	Wearable Bioelectronics: Opportunities for Chemistry. Accounts of Chemical Research, 2019, 52, 521-522.	15.6	43
123	Approaches Toward Efficient and Stable Electron Extraction Contact in Organic Photovoltaic Cells: Inspiration from Organic Light-Emitting Diodes. Electronic Materials Letters, 2010, 6, 41-50.	2.2	42
124	One-dimensional conjugated polymer nanomaterials for flexible and stretchable electronics. Journal of Materials Chemistry C, 2018, 6, 3538-3550.	5.5	42
125	Novel Hyperbranched Phthalocyanine as a Hole Injection Nanolayer in Organic Lightâ€Emitting Diodes. Macromolecular Rapid Communications, 2007, 28, 1657-1662.	3.9	41
126	High-efficiency polymer photovoltaic cells using a solution-processable insulating interfacial nanolayer: the role of the insulating nanolayer. Journal of Materials Chemistry, 2012, 22, 25148.	6.7	41

#	Article	IF	Citations
127	A High Performance Nondoped Blue Organic Light-Emitting Device Based on a Diphenylfluoranthene-Substituted Fluorene Derivative. Journal of Physical Chemistry C, 2009, 113, 6227-6230.	3.1	40
128	Humidity controlled crystallization of thin CH ₃ NH ₃ PbI ₃ films for high performance perovskite solar cell. Physica Status Solidi - Rapid Research Letters, 2016, 10, 381-387.	2.4	39
129	Highly Conductive Transparent and Flexible Electrodes Including Double-Stacked Thin Metal Films for Transparent Flexible Electronics. ACS Applied Materials & Interfaces, 2017, 9, 16343-16350.	8.0	39
130	Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting. Physical Chemistry Chemical Physics, 2013, 15, 11717.	2.8	38
131	An Easy Route to Red Emitting Homoleptic Ir ^{III} Complex for Highly Efficient Solutionâ€Processed Phosphorescent Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2014, 20, 8260-8264.	3.3	38
132	Perovskite Emitters as a Platform Material for Downâ€Conversion Applications. Advanced Materials Technologies, 2020, 5, 2000091.	5.8	38
133	Study on a set of bis-cyclometalated Ir(iii) complexes with a common ancillary ligand. Dalton Transactions, 2008, , 4732.	3.3	36
134	Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices. Scientific Reports, 2015, 5, 16710.	3.3	36
135	Metal Halide Perovskites: From Crystal Formations to Lightâ€Emittingâ€Diode Applications. Small Methods, 2018, 2, 1800093.	8.6	36
136	Direct-printed nanoscale metal-oxide-wire electronics. Nano Energy, 2019, 58, 437-446.	16.0	36
137	Inverse opal tungsten trioxide films with mesoporous skeletons: synthesis and photoelectrochemical responses. Chemical Communications, 2012, 48, 11939.	4.1	35
138	Simple, Inexpensive, and Rapid Approach to Fabricate Crossâ€Shaped Memristors Using an Inorganicâ€Nanowireâ€Digitalâ€Alignment Technique and a Oneâ€Step Reduction Process. Advanced Materials, 2016, 28, 527-532.	21.0	35
139	White polymer light-emitting devices from ternary-polymer blend with concentration gradient. Chemical Physics Letters, 2005, 403, 293-297.	2.6	34
140	Transparent flexible conductor of poly(methyl methacrylate) containing highly-dispersed multiwalled carbon nanotube. Organic Electronics, 2008, 9, 1-13.	2.6	34
141	Optimization of 3D Plasmonic Crystal Structures for Refractive Index Sensing. Journal of Physical Chemistry C, 2009, 113, 10493-10499.	3.1	34
142	Flexible organic light-emitting diodes for solid-state lighting. Journal of Photonics for Energy, 2015, 5, 053599.	1.3	34
143	Low-threshold blue amplified spontaneous emission in a statistical copolymer and its blend. Applied Physics Letters, 2002, 81, 424-426.	3.3	33
144	Role of Ultrathin Metal Fluoride Layer in Organic Photovoltaic Cells: Mechanism of Efficiency and Lifetime Enhancement. ChemSusChem, 2014, 7, 1125-1132.	6.8	33

#	Article	IF	Citations
145	Ligand-Assisted Sulfide Surface Treatment of CsPbl ₃ Perovskite Quantum Dots to Increase Photoluminescence and Recovery. ACS Photonics, 2021, 8, 1979-1987.	6.6	33
146	Structural and Thermal Disorder of Solution-Processed CH ₃ NH ₃ PbBr ₃ Hybrid Perovskite Thin Films. ACS Applied Materials & Amp; Interfaces, 2017, 9, 10344-10348.	8.0	32
147	White emission from a ternary polymer blend by incomplete cascade energy transfer. Synthetic Metals, 2001, 122, 437-441.	3.9	31
148	Highly Efficient Hybrid Inorganic–Organic Lightâ€Emitting Diodes by using Airâ€Stable Metal Oxides and a Thick Emitting Layer. ChemSusChem, 2010, 3, 1021-1023.	6.8	31
149	Electroplated core–shell nanowire network electrodes for highly efficient organic light-emitting diodes. Nano Convergence, 2022, 9, 1.	12.1	31
150	Soft Embossing of Nanoscale Optical and Plasmonic Structures in Glass. ACS Nano, 2011, 5, 5763-5774.	14.6	30
151	Air-stable inverted structure of hybrid solar cells using a cesium-doped ZnO electron transport layer prepared by a sol–gel process. Journal of Materials Chemistry A, 2013, 1, 11802.	10.3	30
152	Recent Progress in Development of Wearable Pressure Sensors Derived from Biological Materials. Advanced Healthcare Materials, 2021, 10, e2100460.	7.6	30
153	A soluble self-doped conducting polyaniline graft copolymer as a hole injection layer in polymer light-emitting diodes. Polymer, 2007, 48, 7236-7240.	3.8	29
154	Understanding the Synergistic Effect of Device Architecture Design toward Efficient Perovskite Lightâ€Emitting Diodes Using Interfacial Layer Engineering. Advanced Materials Interfaces, 2021, 8, 2001712.	3.7	29
155	A stable blue host material for organic light-emitting diodes. Applied Physics Letters, 2007, 91, .	3.3	28
156	Surface smoothness and conductivity control of vapor-phase polymerized poly(3,4-ethylenedioxythiophene) thin coating for flexible optoelectronic applications. Thin Solid Films, 2008, 516, 6020-6027.	1.8	28
157	Controlling Surface Enrichment in Polymeric Hole Extraction Layers to Achieve Highâ€Efficiency Organic Photovoltaic Cells. ChemSusChem, 2012, 5, 2053-2057.	6.8	28
158	Ideal conducting polymer anode for perovskite light-emitting diodes by molecular interaction decoupling. Nano Energy, 2019, 60, 324-331.	16.0	28
159	Aromatic nonpolar organogels for efficient and stable perovskite green emitters. Nature Communications, 2020, 11, 4638.	12.8	28
160	Chiral polymer hosts for circularly polarized electroluminescence devices. Chemical Science, 2021, 12, 8668-8681.	7.4	28
161	Application of a Novel Fullerene-Containing Copolymer to Electroluminescent Devices. Chemistry of Materials, 2002, 14, 4281-4285.	6.7	27
162	Threeâ€Dimensional Nanostructured Indiumâ€Tinâ€Oxide Electrodes for Enhanced Performance of Bulk Heterojunction Organic Solar Cells. Advanced Energy Materials, 2014, 4, 1301566.	19.5	27

#	Article	IF	Citations
163	Elucidating the Role of Conjugated Polyelectrolyte Interlayers for Highâ€Efficiency Organic Photovoltaics. ChemSusChem, 2015, 8, 3062-3068.	6.8	27
164	Improvement of quantum efficiency in polymer light-emitting diodes by a single-ion conductor. Applied Physics Letters, 2000, 76, 3161-3163.	3.3	26
165	Designing a Stable Cathode with Multiple Layers to Improve the Operational Lifetime of Polymer Lightâ€Emitting Diodes. Advanced Functional Materials, 2009, 19, 1863-1868.	14.9	26
166	Photoreactive low-bandgap 4H-cyclopenta[2,1-b:3,4-b′]dithiophene and 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole-based alternating copolymer for polymer solar cell. Organic Electronics, 2011, 12, 269-278.	2.6	25
167	Improvement of EL efficiency in polymer light-emitting diodes by heat treatments. Synthetic Metals, 2001, 117, 249-251.	3.9	24
168	Highly efficient red electrophosphorescence from a solution-processed zwitterionic cyclometalated iridium(III) complex. Applied Physics Letters, 2007, 91, 211106.	3.3	24
169	Fabrication of the flexible pentacene thin-film transistors on 304 and 430 stainless steel (SS) substrate. Organic Electronics, 2009, 10, 970-977.	2.6	24
170	Solution-Processed n-Type Graphene Doping for Cathode in Inverted Polymer Light-Emitting Diodes. ACS Applied Materials & Diodes, 2018, 10, 4874-4881.	8.0	24
171	Abnormal spatial heterogeneity governing the charge-carrier mechanism in efficient Ruddlesden–Popper perovskite solar cells. Energy and Environmental Science, 2021, 14, 4915-4925.	30.8	24
172	Morphological and electrical effect of an ultrathin iridium oxide hole extraction layer on P3HT:PCBM bulk-heterojunction solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 1146-1150.	6.2	23
173	Effects of thermal treatment on organic-inorganic hybrid perovskite films and luminous efficiency of light-emitting diodes. Current Applied Physics, 2016, 16, 1069-1074.	2.4	23
174	Importance of Interfacial Band Structure between the Substrate and Mn ₃ O ₄ Nanocatalysts during Electrochemical Water Oxidation. ACS Catalysis, 2020, 10, 1237-1245.	11.2	23
175	All-Solution-Processed BiVO ₄ /TiO ₂ Photoanode with NiCo ₂ O ₄ Nanofiber Cocatalyst for Enhanced Solar Water Oxidation. ACS Applied Energy Materials, 2020, 3, 5646-5656.	5.1	23
176	Ultrahigh density array of CdSe nanorods for CdSe/polymer hybrid solar cells: enhancement in short-circuit current density. Journal of Materials Chemistry, 2011, 21, 12449.	6.7	22
177	A systematic identification of efficiency enrichment between thiazole and benzothiazole based yellow iridium(iii) complexes. Journal of Materials Chemistry C, 2014, 2, 9398-9405.	5.5	22
178	Largeâ€Scale Highly Aligned Nanowire Printing. Macromolecular Materials and Engineering, 2017, 302, 1600507.	3.6	22
179	Influence of A-site cation on the thermal stability of metal halide perovskite polycrystalline films. Journal of Information Display, 2018, 19, 53-60.	4.0	22
180	Effect of Interfacial Layers on the Device Lifetime of Perovskite Solar Cells. Small Methods, 2020, 4, 2000065.	8.6	22

#	Article	IF	Citations
181	Enhancing photoluminescence quantum efficiency of metal halide perovskites by examining luminescence-limiting factors. APL Materials, 2020, 8, .	5.1	22
182	Electroluminescence of Perovskite Nanocrystals with Ligand Engineering. Trends in Chemistry, 2020, 2, 837-849.	8.5	22
183	Pattern Formation of Silver Nanoparticles in 1â€; 2â€; and 3D Microstructures Fabricated by a Photo―and Thermal Reduction Method. Advanced Functional Materials, 2010, 20, 2296-2302.	14.9	21
184	Positive Effects of E-Beam Irradiation in Inorganic Particle Based Separators for Lithium-Ion Battery. Journal of the Electrochemical Society, 2010, 157, A31.	2.9	21
185	Color Purifying Optical Nanothin Film for Three Primary Colors in Optoelectronics. ACS Photonics, 2018, 5, 3322-3330.	6.6	21
186	Flexible artificial synesthesia electronics with sound-synchronized electroluminescence. Nano Energy, 2019, 59, 773-783.	16.0	21
187	Strategies to Improve Electrical and Electronic Properties of PEDOT:PSS for Organic and Perovskite Optoelectronic Devices. Macromolecular Research, 2019, 27, 2-9.	2.4	21
188	Electroplated Silver–Nickel Core–Shell Nanowire Network Electrodes for Highly Efficient Perovskite Nanoparticle Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 39479-39486.	8.0	21
189	Molecularâ€Scale Strategies to Achieve High Efficiency and Low Efficiency Rollâ€off in Simplified Solutionâ€Processed Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 2005292.	14.9	21
190	Organic synaptic transistors for flexible and stretchable artificial sensory nerves. MRS Bulletin, 2021, 46, 321-329.	3.5	21
191	Synchronous vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) and poly(3-hexylthiophene) copolymer systems for tunable optoelectronic properties. Organic Electronics, 2010, 11, 1668-1675.	2.6	20
192	Solution-processed electron-only tandem polymer light-emitting diodes for broad wavelength light emission. Journal of Materials Chemistry C, 2017, 5, 110-117.	5.5	20
193	Valueâ€Added Recycling of Inexpensive Carbon Sources to Graphene and Carbon Nanotubes. Advanced Sustainable Systems, 2019, 3, 1800016.	5.3	20
194	Layer-by-Layer Spin Self-Assembled Hole Injection Layers Containing a Perfluorinated Ionomer for Efficient Polymer Light-Emitting Diodes. Macromolecular Rapid Communications, 2007, 28, 1366-1372.	3.9	19
195	Low-threshold lasing in a microcavity of fluorene-based liquid-crystalline polymer blends. Journal of Applied Physics, 2003, 93, 1367-1370.	2.5	18
196	Regenerated surface plasmon polaritons. Applied Physics Letters, 2005, 86, 141105.	3.3	18
197	Polaronic Charge Carrier–Lattice Interactions in Lead Halide Perovskites. ChemSusChem, 2017, 10, 3705-3711.	6.8	18
198	Improvement of work function and hole injection efficiency of graphene anode using CHF ₃ plasma treatment. 2D Materials, 2015, 2, 014002.	4.4	17

#	Article	IF	Citations
199	A field-induced hole generation layer for high performance alternating current polymer electroluminescence and its application to extremely flexible devices. Journal of Materials Chemistry C, 2016, 4, 4434-4441.	5.5	17
200	Molecular monolayer modification of the cathode in organic light-emitting diodes. Applied Physics Letters, 2006, 89, 223511.	3.3	16
201	A systematic doping strategy to control the emission spectrum of ternary luminescent polymer blends for white emission. Optical Materials, 2007, 30, 486-491.	3.6	16
202	Air stable and low temperature evaporable Li3N as a n type dopant in organic light-emitting diodes. Synthetic Metals, 2009, 159, 1664-1666.	3.9	16
203	Suppressing π–π stacking interactions for enhanced solid-state emission of flat aromatic molecules <i>via</i> edge functionalization with picket-fence-type groups. Journal of Materials Chemistry C, 2020, 8, 17289-17296.	5. 5	16
204	Photonic Synapses: Retinaâ€Inspired Carbon Nitrideâ€Based Photonic Synapses for Selective Detection of UV Light (Adv. Mater. 11/2020). Advanced Materials, 2020, 32, 2070080.	21.0	16
205	Nanosinusoidal Surface Zinc Oxide for Optical Out-coupling of Inverted Organic Light-Emitting Diodes. ACS Photonics, 2018, 5, 4061-4067.	6.6	15
206	Excitation energy transfer in dye-doped ternary polymer blends for light-emitting diodes and lasers. Current Applied Physics, 2001, 1, 363-366.	2.4	14
207	Spin-Assembled Nanolayer of a Hyperbranched Polymer on the Anode in Organic Light-Emitting Diodes: The Mechanism of Hole Injection and Electron Blocking. Langmuir, 2008, 24, 12704-12709.	3.5	14
208	Fabrication of Poly(3-hexylthiophene) Thin Films by Vapor-Phase Polymerization for Optoelectronic Device Applications. ACS Applied Materials & Samp; Interfaces, 2009, 1, 1567-1571.	8.0	14
209	Synergistic Effects of Doping and Thermal Treatment on Organic Semiconducting Nanowires. ACS Applied Materials & Doping and Thermal Treatment on Organic Semiconducting Nanowires. ACS Applied Materials & Doping and Thermal Treatment on Organic Semiconducting Nanowires. ACS Applied Materials & Doping and Thermal Treatment on Organic Semiconducting Nanowires. ACS Applied Materials & Doping and Thermal Treatment on Organic Semiconducting Nanowires. ACS Applied Materials & Doping and Thermal Treatment on Organic Semiconducting Nanowires. ACS Applied Materials & Doping and Thermal Treatment on Organic Semiconducting Nanowires. ACS Applied Materials & Doping and Thermal Treatment on Organic Semiconducting Nanowires.	8.0	14
210	Synergistic Molecular Engineering of Holeâ€injecting Conducting Polymers Overcomes Luminescence Quenching in Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2100646.	7.3	14
211	Scalable Noninvasive Organic Fiber Lithography for Largeâ€Area Optoelectronics. Advanced Optical Materials, 2016, 4, 967-972.	7.3	13
212	Large-scale metal nanoelectrode arrays based on printed nanowire lithography for nanowire complementary inverters. Nanoscale, 2017, 9, 15766-15772.	5.6	13
213	Low-dimensional iodide perovskite nanocrystals enable efficient red emission. Nanoscale, 2019, 11, 12793-12797.	5.6	13
214	Improvement of power conversion efficiency of P3HT:CdSe hybrid solar cells by enhanced interconnection of CdSe nanorods via decomposable selenourea. Journal of Materials Chemistry A, 2013, 1, 2401.	10.3	12
215	Charge transport and morphology of pentacene films confined in nano-patterned region. NPG Asia Materials, 2014, 6, e91-e91.	7.9	12
216	Controlled surface oxidation of multi-layered graphene anode to increase hole injection efficiency in organic electronic devices. 2D Materials, 2016, 3, 014003.	4.4	12

#	Article	IF	Citations
217	Direct growth of graphene-dielectric bi-layer structure on device substrates from Si-based polymer. 2D Materials, 2017, 4, 024001.	4.4	12
218	Unraveling the origin of near-infrared emission in carbon dots by ultrafast spectroscopy. Carbon, 2022, 188, 229-237.	10.3	12
219	A correlation between small-molecule dependent nanomorphology and device performance of organic light-emitting diodes with ternary blend emitting layers. Journal of Materials Chemistry C, 2017, 5, 9761-9769.	5.5	11
220	Ultra-High-Resolution Organic Light-Emitting Diodes with Color Conversion Electrode. ACS Photonics, 2018, 5, 1891-1897.	6.6	11
221	Bimolecular Crystals with an Intercalated Structure Improve Poly(<i>p</i> poly(i>a€phenylenevinylene)â€Based Organic Photovoltaic Cells. ChemSusChem, 2015, 8, 337-344.	6.8	10
222	Perovskite Lightâ€Emitting Diodes: Efficient Visible Quasiâ€2D Perovskite Lightâ€Emitting Diodes (Adv. Mater.)	Tj <u>5</u> 1.090 (0 0 ₁ rgBT /Ove
223	Interface-Engineered Charge-Transport Properties in Benzenedithiol Molecular Electronic Junctions via Chemically p-Doped Graphene Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 42043-42049.	8.0	10
224	Degradation Protection of Color Dyes Encapsulated by Graphene Barrier Films. Chemistry of Materials, 2019, 31, 7173-7177.	6.7	10
225	Synthesis and characterization of homoleptic triply cyclometalated iridium(III) complex containing 6-(pyridin-2-yl)isoquinoline moiety for solution-processable orange-phosphorescent organic light-emitting diodes. Dyes and Pigments, 2021, 185, 108880.	3.7	10
226	High-efficiency and stable optical transmitter using VCSEL-direct-bonded connector for optical interconnection. Optics Express, 2007, 15, 15767.	3.4	9
227	Control of emission outcoupling in liquid-crystalline fluorescent polymer films. Organic Electronics, 2007, 8, 317-324.	2.6	9
228	Electrophosphorescent devices with solution processible emitter and hole transport layer stack. Current Applied Physics, 2012, 12, e38-e41.	2.4	9
229	Dual-Function Metal–Insulator–Metal Plasmonic Optical Filter. IEEE Photonics Journal, 2015, 7, 1-8.	2.0	9
230	Low cross-talk, deep subwavelength plasmonic metal/insulator/metal waveguide intersections with broadband tunability. Photonics Research, 2016, 4, 272.	7.0	9
231	Emerging Halide Perovskite Materials and Devices for Optoelectronics. Advanced Materials, 2019, 31, e1905077.	21.0	9
232	Perovskite LEDs: Strategies to Improve Luminescence Efficiency of Metalâ€Halide Perovskites and Lightâ€Emitting Diodes (Adv. Mater. 47/2019). Advanced Materials, 2019, 31, 1970335.	21.0	9
233	Production of C, N Alternating 2D Materials Using Covalent Modification and Their Electroluminescence Performance. Small Science, 2021, 1, 2000042.	9.9	9

 $\label{lighta} \textbf{Emitting Diodes: Multicolored Organic/Inorganic Hybrid Perovskite Lighta} \textbf{Emitting Diodes (Adv.) Tj ETQq0 } \\ \textbf{21.0} \\ \textbf{0.0} \\ \textbf{rgBT /Qverlock 10} \\ \textbf{10.0} \\$

234

#	Article	IF	Citations
235	Temperature-dependent nanomorphology–performance relations in binary iridium complex blend films for organic light emitting diodes. Physical Chemistry Chemical Physics, 2015, 17, 21555-21563.	2.8	8
236	Versatile pâ€Type Chemical Doping to Achieve Ideal Flexible Graphene Electrodes. Angewandte Chemie, 2016, 128, 6305-6309.	2.0	8
237	Improvement of both efficiency and stability in organic photovoltaics by using water-soluble anionic conjugated polyelectrolyte interlayer. Materials Today Energy, 2017, 5, 66-71.	4.7	8
238	A Metal-Insulator-Metal Deep Subwavelength Cavity Based on Cutoff Frequency Modulation. Applied Sciences (Switzerland), 2017, 7, 86.	2.5	8
239	Tailoring the Structure of Lowâ€Dimensional Halide Perovskite through a Room Temperature Solution Process: Role of Ligands. Small Methods, 2021, 5, e2100054.	8.6	8
240	Mixed Solvent Engineering for Morphology Optimization of the Electron Transport Layer in Perovskite Photovoltaics. ACS Applied Energy Materials, 2022, 5, 387-396.	5.1	8
241	Quasi Two-Dimensional Perovskites: Efficient Ruddlesden-Popper Perovskite Light-Emitting Diodes with Randomly Oriented Nanocrystals (Adv. Funct. Mater. 27/2019). Advanced Functional Materials, 2019, 29, 1970187.	14.9	6
242	Controllable deposition of organic metal halide perovskite films with wafer-scale uniformity by single source flash evaporation. Scientific Reports, 2020, 10, 18781.	3.3	6
243	Chemically Robust Indium Tin Oxide/Graphene Anode for Efficient Perovskite Light-Emitting Diodes. ACS Applied Materials & Diversaces, 2021, 13, 9074-9080.	8.0	6
244	Photoluminescence characteristics of a highly soluble fullerene-containing polymer. Macromolecular Research, 2002, 10, 278-281.	2.4	5
245	Sensitive Hydrogen Sensors Based on Gold–Palladium Double Nanoblock. IEEE Photonics Technology Letters, 2014, 26, 2232-2235.	2.5	5
246	Artificial Synapses: Organometal Halide Perovskite Artificial Synapses (Adv. Mater. 28/2016). Advanced Materials, 2016, 28, 6019-6019.	21.0	5
247	Production of Metalâ€Free C, N Alternating Nanoplatelets and Their In Vivo Fluorescence Imaging Performance without Labeling. Advanced Functional Materials, 2020, 30, 2004800.	14.9	5
248	Graphene growth from polymers. Carbon Letters, 2013, 14, 145-151.	5.9	5
249	Luminescent Spectral Changes in Polymer Light-Emitting Diodes after Heat Treatments. Molecular Crystals and Liquid Crystals, 2000, 349, 451-454.	0.3	4
250	Lithographically patterned anodic aluminum oxide (AAO) nanostructures for fluorescence enhancement. , 2012 , , .		4
251	Study on the formation of magnetic nanoclusters and change in spin ordering in Co-doped ZnO using magnetic susceptibility. RSC Advances, 2015, 5, 65840-65846.	3.6	4
252	Spatial mapping of refractive index based on a plasmonic tapered channel waveguide. Optics Express, 2015, 23, 5907.	3.4	4

#	Article	IF	Citations
253	Refractive index sensing and surface-enhanced Raman spectroscopy using silver–gold layered bimetallic plasmonic crystals. Beilstein Journal of Nanotechnology, 2017, 8, 2492-2503.	2.8	4
254	Supraâ€Binary Polarization in a Ferroelectric Nanowire. Advanced Materials, 2021, 33, e2101981.	21.0	4
255	Quantum-confinement effect on the linewidth broadening of metal halide perovskite-based quantum dots. Journal of Physics Condensed Matter, 2021, 33, .	1.8	4
256	White Emission from a Polymer Blend Light-Emitting Diode by Incomplete Cascade Energy Transfer. Molecular Crystals and Liquid Crystals, 2001, 371, 435-438.	0.3	3
257	Optical link between FPGA microprocessors using a fiber-embedded rigid PCB. , 2010, , .		3
258	Design of small-area transimpedance optical receiver module for optical interconnects., 2014,,.		3
259	Solar Cells: Planar CH3NH3Pbl3Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate (Adv. Mater. 22/2015). Advanced Materials, 2015, 27, 3464-3464.	21.0	3
260	Increased luminescent efficiency of perovskite light emitting diodes based on modified two-step deposition method providing gradient concentration. APL Materials, 2018, 6, 111101.	5.1	3
261	Crosstalk analysis of planar and multi-chip transmitter modules for optical PCB applications. , 2010, , .		2
262	Flexible Encapsulation: Flexible Lamination Encapsulation (Adv. Mater. 29/2015). Advanced Materials, 2015, 27, 4387-4387.	21.0	2
263	Optoâ€Electronic Devices: Versatile Metal Nanowiring Platform for Largeâ€Scale Nanoâ€and Optoâ€Electronic Devices (Adv. Mater. 41/2016). Advanced Materials, 2016, 28, 9232-9232.	21.0	2
264	Pâ€127: Angle Insensitive Flexible Color Filter Electrodes. Digest of Technical Papers SID International Symposium, 2017, 48, 1738-1741.	0.3	2
265	Highly Luminescent Organic Nanorods from Air Oxidation of <i>paraâ€</i> Substituted Anilines for Freestanding Deepâ€Red Color Filters. Advanced Optical Materials, 2018, 6, 1800577.	7. 3	2
266	Display that bend and stretch: Some smartphones can now fold like a wallet. In a few years, you may wear one on your skin. IEEE Spectrum, 2020, 57, 24-29.	0.7	2
267	Sub-Micrometer-Sized Spectrometer by Using Plasmonic Tapered Channel-Waveguide. Journal of the Optical Society of Korea, 2014, 18, 788-792.	0.6	2
268	Improved Quantum Efficiency by Overneutralization of Ionomers Used in Polymer Light-Emitting Diodes. Molecular Crystals and Liquid Crystals, 2000, 349, 455-458.	0.3	1
269	Use of a Single Anionic Conductor as a Hole-Injecting Material for Polymer Light-Emitting Diodes. Molecular Crystals and Liquid Crystals, 2001, 371, 207-210.	0.3	1
270	Effect of Thermal Annealing on the Charge Carrier Mobility in a Polymer Electroluminescent Device. Molecular Crystals and Liquid Crystals, 2006, 462, 241-248.	0.9	1

#	Article	IF	CITATIONS
271	Effects of Organic Lithium Salt Ultrathin Films on the Electron Injection Efficiency in OLED. Molecular Crystals and Liquid Crystals, 2008, 491, 109-113.	0.9	1
272	Comparison of long- and short-wavelength optical transmitters for optical PCB applications. Proceedings of SPIE, 2009, , .	0.8	1
273	Analysis of thermal effects on crosstalk and performance of optoelectronic transmitter modules. , $2012, , .$		1
274	Short turn-on/off time linear voltage regulator with data detector for power-aware optical interconnect system. , 2012, , .		1
275	Macromol. Mater. Eng. 5/2013. Macromolecular Materials and Engineering, 2013, 298, 600-600.	3.6	1
276	Magnetic domains in H-mediated Zn0.9Co0.1O microdisk arrays. RSC Advances, 2016, 6, 57375-57379.	3.6	1
277	OLEDs: Scalable Noninvasive Organic Fiber Lithography for Large-Area Optoelectronics (Advanced) Tj ETQq1 1 0.	.784314 rg 7.3	gBŢ /Overlo <mark>ck</mark>
278	Thermal effect analysis on crosstalk and performance of optoelectronic transmitter modules for optical interconnects. Optical and Quantum Electronics, 2017, 49, 1.	3.3	1
279	Nanometric Plasmonic Rulers Based on Orthogonal Plasmonic Gap Modes in Metal Nanoblocks. Applied Sciences (Switzerland), 2018, 8, 386.	2.5	1
280	Pâ€110: Efficient Quantum Dot Lightâ€Emitting Diodes by Reducing Oxygen Vacancies of ZnO Nanoparticles with Recycling Process. Digest of Technical Papers SID International Symposium, 2019, 50, 1666-1668.	0.3	1
281	Improving the Efficiency of Flexible Organic Light-emitting Diodes via Alternating High- and Low-index Layers. , 2016, , .		1
282	Solution processed high-performance organic thin film transistors. , 2006, , .		0
283	Solution-Processed High-Efficiency Organic Phosphorescent Devices Utilizing a Blue Ir(III) Complex. Journal of Nanoscience and Nanotechnology, 2008, 8, 2990-2995.	0.9	0
284	Inside Cover: Polyaniline-Based Conducting Polymer Compositions with a High Work Function for Hole-Injection Layers in Organic Light-Emitting Diodes: Formation of Ohmic Contacts (ChemSusChem) Tj ETQq0	0 6. 8gBT /	Oværlock 10 T
285	Copper Nanowires: Individually Position-Addressable Metal-Nanofiber Electrodes for Large-Area Electronics (Adv. Mater. 47/2014). Advanced Materials, 2014, 26, 8067-8067.	21.0	0
286	B12-O-24 <i>In-situ</i> i>observation of temperature dependent nanomorphology-performance relations in emitting layer of OLEDs by TEM. Microscopy (Oxford, England), 2015, 64, i30.2-i30.	1.5	0
287	Spectral tuning of an add-drop filter by using double dielectric microdisks. , 2015, , .		0
288	Three-dimensional plasmonic ruler based on silver metal blocks. , 2015, , .		0

#	Article	IF	CITATIONS
289	Nanowires: Simple, Inexpensive, and Rapid Approach to Fabricate Crossâ€Shaped Memristors Using an Inorganicâ€Nanowireâ€Digitalâ€Alignment Technique and a Oneâ€Step Reduction Process (Adv. Mater. 3/2016). Advanced Materials, 2016, 28, 591-591.	21.0	0
290	Optical transceiver with in-chip temperature compensation module design and fabrication. Optical and Quantum Electronics, 2016, 48, 1.	3.3	0
291	Design and analysis of a multichannel transceiver for high-speed optical interconnects. Optical and Quantum Electronics, 2016, 48, 1.	3.3	O
292	Design of full-duplex and multifunction bidirectional CMOS transceiver for optical interconnect applications. Optical and Quantum Electronics, 2017, 49, 1.	3.3	0
293	3D Printed Ion-Selective Field Effect Transistors. , 2018, , .		0
294	Energy Spotlight. ACS Energy Letters, 2021, 6, 2635-2637.	17.4	0
295	Hydrogen-bonded cation-composition-engineered color-stable blue PeLEDs. Science Bulletin, 2021, 66, 2159-2161.	9.0	0
296	Perovskite Nanoparticles: Extremely Stable Luminescent Crosslinked Perovskite Nanoparticles under Harsh Environments over 1.5 Years (Adv. Mater. 3/2021). Advanced Materials, 2021, 33, 2170017.	21.0	0
297	Hysteresis-free flexible perovskite solar cells with evaporated organic electron transport layers. , 2015, , .		O
298	Performance analysis of magnetic gear with Halbach array for high power and high speed. International Journal of Applied Electromagnetics and Mechanics, 2020, 64, 959-967.	0.6	0
299	Organic Artificial Nerve Electronics. , 2022, , 413-452.		0