Ming-Chao Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5482124/publications.pdf

Version: 2024-02-01

623734 642732 31 577 14 23 citations g-index h-index papers 32 32 32 455 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Toughening diene elastomers by strong hydrogen bond interactions. Polymer, 2016, 106, 21-28.	3.8	76
2	Non-rubber components tuning mechanical properties of natural rubber from vulcanization kinetics. Polymer, 2019, 183, 121911.	3.8	53
3	Towards a Supertough Thermoplastic Polyisoprene Elastomer Based on a Biomimic Strategy. Angewandte Chemie - International Edition, 2018, 57, 15836-15840.	13.8	45
4	Research on architecture and composition of natural network in natural rubber. Polymer, 2018, 154, 90-100.	3.8	44
5	Mimicking the Mechanical Robustness of Natural Rubber Based on a Sacrificial Network Constructed by Phospholipids. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14468-14475.	8.0	42
6	Synergistic effect of CB and GO/CNT hybrid fillers on the mechanical properties and fatigue behavior of NR composites. RSC Advances, 2018, 8, 10573-10581.	3.6	35
7	A rheological study on non-rubber component networks in natural rubber. RSC Advances, 2015, 5, 91742-91750.	3.6	32
8	Impact of hydrogen bonds dynamics on mechanical behavior of supramolecular elastomer. Polymer, 2016, 105, 221-226.	3.8	27
9	Mechanical and dynamic mechanical properties of natural rubber blended with waste rubber powder modified by both microwave and sol–gel method. Journal of Applied Polymer Science, 2013, 129, 2313-2320.	2.6	22
10	Exploring the unique characteristics of natural rubber induced by coordination interaction between proteins and Zn2+. Polymer, 2020, 193, 122357.	3.8	22
11	Enhanced relaxation behavior below glass transition temperature in diene elastomer with heterogeneous physical network. Polymer, 2016, 91, 81-88.	3.8	19
12	Study of molecular weight and chain branching architectures of natural rubber. Journal of Applied Polymer Science, 2016, 133, .	2.6	18
13	The Role of Non-Rubber Components on Molecular Network of Natural Rubber during Accelerated Storage. Polymers, 2020, 12, 2880.	4.5	17
14	Toughening natural rubber by the innate sacrificial network. Polymer, 2020, 194, 122419.	3.8	17
15	Detecting structural orientation in isoprene rubber/multiwall carbon nanotube nanocomposites at different scales during uniaxial deformation. Polymer International, 2018, 67, 258-268.	3.1	14
16	Influence of I-quebrachitol on the properties of centrifuged natural rubber. E-Polymers, 2021, 21, 420-427.	3.0	10
17	The role of natural rubber endogenous proteins in promoting the formation of vulcanization networks. E-Polymers, 2022, 22, 445-453.	3.0	10
18	Effect of protein on the thermogenesis performance of natural rubber matrix. Scientific Reports, 2020, 10, 16417.	3.3	9

#	Article	IF	CITATIONS
19	Mechanically Robust Elastomers Enabled by a Facile Interfacial Interactionsâ€Driven Sacrificial Network. Macromolecular Rapid Communications, 2021, 42, e2100509.	3.9	9
20	Towards a Supertough Thermoplastic Polyisoprene Elastomer Based on a Biomimic Strategy. Angewandte Chemie, 2018, 130, 16062-16066.	2.0	8
21	Towards high performance anti-aging diolefin elastomers based on structure healing strategy. Polymer, 2020, 186, 122076.	3 . 8	8
22	Natural rubber latex/MXene foam with robust and multifunctional properties. E-Polymers, 2021, 21, 179-185.	3.0	8
23	Based on transalkylation reaction the rearrangeable conventional sulfur network facile design for vulcanized diolefin elastomers. Journal of Applied Polymer Science, 2021, 138, 51182.	2.6	7
24	Enabling Superior Thermo–Oxidative Resistance Elastomers Based on a Structure Recovery Strategy. Macromolecular Rapid Communications, 2021, 42, e2000762.	3.9	6
25	New insight into naturally occurring network and entanglements induced strain behavior of vulcanized natural rubber. Polymer, 2022, 241, 124545.	3.8	6
26	Analysis of the thermogenesis mechanism of natural rubber under high speed strain. Polymers for Advanced Technologies, 2020, 31, 1994-2006.	3. 2	5
27	Effect of N, N′-m-phenylene bismaleimide on mechanical performance of waste rubber powder sintered by high-pressure high-temperature method. Journal of Rubber Research (Kuala Lumpur, Malaysia), 2020, 23, 41-46.	1.1	4
28	MXene Enabling the Long-Term Superior Thermo-Oxidative Resistance for Elastomers. Polymers, 2021, 13, 493.	4.5	3
29	Toward Mechanically Robust Crosslinked Elastomers through Phase Transfer Agent Tuning the Solubility of Zn2+ in the Organic Phase. Polymers, 2022, 14, 1234.	4.5	1
30	Role of epoxidation on segmental motion of polyisoprene as studied by broadband dielectric spectroscopy. Journal of Applied Polymer Science, 2016, 133, .	2.6	0
31	Rücktitelbild: Towards a Supertough Thermoplastic Polyisoprene Elastomer Based on a Biomimic Strategy (Angew. Chem. 48/2018). Angewandte Chemie, 2018, 130, 16136-16136.	2.0	O