
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5482119/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A comprehensive review on the application of active packaging technologies to muscle foods. Food Control, 2017, 82, 163-178.	2.8	214
2	An overview of smart packaging technologies for monitoring safety and quality of meat and meat products. Packaging Technology and Science, 2018, 31, 449-471.	1.3	94
3	Effect of transglutaminase-catalyzed glycosylation on the allergenicity and conformational structure of shrimp (Metapenaeus ensis) tropomyosin. Food Chemistry, 2017, 219, 215-222.	4.2	59
4	Effect of pH shifts on IgE-binding capacity and conformational structure of tropomyosin from short-neck clam (Ruditapes philippinarum). Food Chemistry, 2015, 188, 248-255.	4.2	44
5	Effect of malondialdehyde treatment on the IgE binding capacity and conformational structure of shrimp tropomyosin. Food Chemistry, 2015, 175, 374-380.	4.2	41
6	Potential efficacy of processing technologies for mitigating crustacean allergenicity. Critical Reviews in Food Science and Nutrition, 2019, 59, 2807-2830.	5.4	41
7	Effect of tyrosinase-aided crosslinking on the IgE binding potential and conformational structure of shrimp (Metapenaeus ensis) tropomyosin. Food Chemistry, 2018, 248, 287-295.	4.2	40
8	Characterization of new active packaging based on PP/LDPE composite films containing attapulgite loaded with Allium sativum essence oil and its application for large yellow croaker (Pseudosciaena) Tj ETQq0 0	0 rg BI 3/Ove	erlo se 10 Tf 5
9	Changes of structure and IgE binding capacity of shrimp (Metapenaeus ensis) tropomyosin followed by acrolein treatment. Food and Function, 2017, 8, 1028-1036.	2.1	37
10	Impacts of glycation and transglutaminase-catalyzed glycosylation with glucosamine on the conformational structure and allergenicity of bovine β-lactoglobulin. Food and Function, 2018, 9, 3944-3955.	2.1	36
11	Immunomodulatory Effect of Laccase/Caffeic Acid and Transglutaminase in Alleviating Shrimp Tropomyosin (Met e 1) Allergenicity. Journal of Agricultural and Food Chemistry, 2020, 68, 7765-7778.	2.4	33
12	Structural changes of 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) treated shrimp tropomyosin decrease allergenicity. Food Chemistry, 2019, 274, 547-557.	4.2	30
13	Development of a method for the quantification of fish major allergen parvalbumin in food matrix via liquid chromatography-tandem mass spectrometry with multiple reaction monitoring. Food Chemistry, 2019, 276, 358-365.	4.2	30
14	Covalent and non-covalent interactions of cyanidin-3- <i>O</i> -glucoside with milk proteins revealed modifications in protein conformational structures, digestibility, and allergenic characteristics. Food and Function, 2021, 12, 10107-10120.	2.1	29
15	Effect of 4-hydroxy-2-nonenal treatment on the IgE binding capacity and structure of shrimp (Metapenaeus ensis) tropomyosin. Food Chemistry, 2016, 212, 313-322.	4.2	28
16	Development of ELISA Method for Detecting Crustacean Major Allergen Tropomyosin in Processed Food Samples. Food Analytical Methods, 2019, 12, 2719-2729.	1.3	27
17 —	Insight into IgG/IgE binding ability, in vitro digestibility and structural changes of shrimp (Litopenaeus) Tj ETQq	1 1 0,7843	14 rgBT /Ovei

¹⁸ Changes in structure and allergenicity of shrimp tropomyosin by dietary polyphenols treatment. Food Research International, 2021, 140, 109997.

2.9 26

#	Article	IF	CITATIONS
19	Effects of brown seaweed polyphenols, <i>α</i> â€ŧocopherol, and ascorbic acid on protein oxidation and textural properties of fish mince (<i>Pagrosomus major</i>) during frozen storage. Journal of the Science of Food and Agriculture, 2017, 97, 1102-1107.	1.7	23
20	Lipid emulsion enhances fish allergen parvalbumin's resistance to in vitro digestion and IgG/IgE binding capacity. Food Chemistry, 2020, 302, 125333.	4.2	23
21	In vivo study of antiallergenicity of ethanol extracts from Sargassum tenerrimum, Sargassum cervicorne and Sargassum graminifolium turn. European Food Research and Technology, 2009, 229, 435-441.	1.6	22
22	Quantification of crustacean tropomyosin in foods using highâ€performance liquid chromatography–tandem mass spectrometry method. Journal of the Science of Food and Agriculture, 2021, 101, 5278-5285.	1.7	22
23	An overview on marine anti-allergic active substances for alleviating food-induced allergy. Critical Reviews in Food Science and Nutrition, 2020, 60, 2549-2563.	5.4	21
24	The anti-allergic activity of polyphenol extracted from five marine algae. Journal of Ocean University of China, 2015, 14, 681-684.	0.6	20
25	Effect of tyrosinase and caffeic acid crosslinking of turbot parvalbumin on the digestibility, and release of mediators and cytokines from activated RBL-2H3 cells. Food Chemistry, 2019, 300, 125209.	4.2	20
26	Identification and characterization of a new IgE-binding protein in mackerel (Scomber japonicus) by MALDI-TOF-MS. Journal of Ocean University of China, 2011, 10, 93-98.	0.6	19
27	Determining the effect of malondialdehyde on the <scp>IgE</scp> â€binding capacity of shrimp tropomyosin upon <i>in vitro</i> digestion. Journal of the Science of Food and Agriculture, 2017, 97, 4588-4594.	1.7	19
28	Allergenicity of acroleinâ€ŧreated shrimp tropomyosin evaluated using RBLâ€⊋H3 cell and mouse model. Journal of the Science of Food and Agriculture, 2018, 98, 4374-4378.	1.7	19
29	Effect of laccase-catalyzed cross-linking on the structure and allergenicity of Paralichthys olivaceus parvalbumin mediated by propyl gallate. Food Chemistry, 2019, 297, 124972.	4.2	19
30	Purification, Characterization, and Three-Dimensional Structure Prediction of Paramyosin, a Novel Allergen of <i>Rapana venosa</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 14632-14642.	2.4	19
31	Protein carbonylation during electron beam irradiation may be responsible for changes in IgE binding to turbot parvalbumin. Food and Chemical Toxicology, 2014, 69, 32-37.	1.8	18
32	Tyrosinase/caffeic acid cross-linking alleviated shrimp (Metapenaeus ensis) tropomyosin-induced allergic responses by modulating the Th1/Th2 immunobalance. Food Chemistry, 2021, 340, 127948.	4.2	18
33	Extraction of total wheat (Triticum aestivum) protein fractions and cross-reactivity of wheat allergens with other cereals. Food Chemistry, 2021, 347, 129064.	4.2	18
34	Reducing the Allergenicity of Shrimp Tropomyosin and Allergy Desensitization Based on Glycation Modification. Journal of Agricultural and Food Chemistry, 2021, 69, 14742-14750.	2.4	17
35	Evaluation of electron beam irradiation to reduce the IgE binding capacity of frozen shrimp tropomyosin. Food and Agricultural Immunology, 2017, 28, 189-201.	0.7	16
36	Inhibition of advanced glycation endproducts during fish sausage preparation by transglutaminase and chitosan oligosaccharides induced enzymatic glycosylation. Food and Function, 2018, 9, 253-262.	2.1	16

#	Article	IF	CITATIONS
37	Effect of tyrosinaseâ€catalyzed crosslinking on the structure and allergenicity of turbot parvalbumin mediated by caffeic acid. Journal of the Science of Food and Agriculture, 2019, 99, 3501-3508.	1.7	16
38	Evaluation of poly- and monoclonal antibody-based sandwich enzyme-linked immunosorbent assay (ELISA) for their performance to detect crustacean residues in processed foods. Food Control, 2022, 138, 108983.	2.8	15
39	Identification of oxidative modification of shrimp (Metapenaeus ensis) tropomyosin induced by malonaldehyde. European Food Research and Technology, 2014, 239, 847-855.	1.6	14
40	A comprehensive review on the application of novel disruption techniques for proteins release from microalgae. Critical Reviews in Food Science and Nutrition, 2022, 62, 4309-4325.	5.4	14
41	Whey allergens: Influence of nonthermal processing treatments and their detection methods. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 4480-4510.	5.9	14
42	Enzymatic crosslinking and food allergenicity: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5856-5879.	5.9	14
43	Glycosylation reduces the allergenicity of turbot (Scophthalmus maximus) parvalbumin by regulating digestibility, cellular mediators release and Th1/Th2 immunobalance. Food Chemistry, 2022, 382, 132574.	4.2	14
44	Effect of malonaldehyde cross-linking on the ability of shrimp tropomyosin to elicit the release of inflammatory mediators and cytokines from activated RBL-2H3 cells. Journal of the Science of Food and Agriculture, 2016, 96, 4263-4267.	1.7	13
45	Identification and comparison of allergenicity of native and recombinant fish major allergen parvalbumins from Japanese flounder (<i>Paralichthys olivaceus</i>). Food and Function, 2019, 10, 6615-6623.	2.1	13
46	Identification and Amino Acid Analysis of Allergenic Epitopes of a Novel Allergen Paramyosin (Rap v 2) from <i>Rapana venosa</i> . Journal of Agricultural and Food Chemistry, 2021, 69, 5381-5391.	2.4	13
47	Effects of brown algal phlorotannins and ascorbic acid on the physiochemical properties of minced fish (<i>Pagrosomus major</i>) during freeze–thaw cycles. International Journal of Food Science and Technology, 2017, 52, 706-713.	1.3	12
48	Thermal induced the structural alterations, increased IgG/IgE binding capacity and reduced immunodetection recovery of tropomyosin from shrimp (Litopenaeus vannamei). Food Chemistry, 2022, 391, 133215.	4.2	12
49	Development and application of a tyrosinase-based time-temperature indicator (TTI) for determining the quality of turbot sashimi. Journal of Ocean University of China, 2017, 16, 847-854.	0.6	11
50	Comparison of digestibility and potential allergenicity of raw shrimp (Litopenaeus vannamei) extracts in static and dynamic digestion systems. Food Chemistry, 2021, 345, 128831.	4.2	11
51	Composition and properties of starches from <scp>V</scp> irginiaâ€grown kabuli chickpea (<i><scp>C</scp>icer arietinum </i> <scp>L</scp> .) cultivars. International Journal of Food Science and Technology, 2013, 48, 539-547.	1.3	10
52	Allergenicity of tropomyosin of shrimp (Litopenaeus vannamei) and clam (Ruditapes philippinarum) is higher than that of fish (Larimichthys crocea) via in vitro and in vivo assessment. European Food Research and Technology, 2020, 246, 103-112.	1.6	10
53	A review on food processing and preparation methods for altering fish allergenicity. Critical Reviews in Food Science and Nutrition, 2022, 62, 1951-1970.	5.4	10
54	Development of a sensitive sandwich-ELISA assay for reliable detection of fish residues in foods. Analytical Biochemistry, 2021, 635, 114448.	1.1	9

#	Article	IF	CITATIONS
55	Reducing the Allergenicity of α-Lactalbumin after Lipid Peroxidation. Journal of Agricultural and Food Chemistry, 2021, 69, 5725-5733.	2.4	8
56	Development of a Sandwich Enzyme-linked Immunosorbent Assay (ELISA) for the Detection of Egg Residues in Processed Food Products. Food Analytical Methods, 2021, 14, 1806-1814.	1.3	7
57	Analysis of physicochemical properties during the processing of Yiluxian, a traditional chinese lowâ€salt fish product. International Journal of Food Science and Technology, 2016, 51, 2185-2192.	1.3	6
58	Visual detection of tropomyosin, a major shrimp allergenic protein using gold nanoparticles (AuNPs)-assisted colorimetric aptasensor. Marine Life Science and Technology, 2021, 3, 382-394.	1.8	6
59	Dot-immunogold filtration assay for rapid screening of three fluoroquinolones. Food and Agricultural Immunology, 2009, 20, 125-137.	0.7	5
60	The influence of pre-treatment methods and matrix effect on sesame (Sesamum indicum) sandwich ELISA detection. Food and Agricultural Immunology, 2021, 32, 540-556.	0.7	5
61	Allergenicity determination of Turbot parvalbumin for safety of fish allergy via dendritic cells, RBLâ€2H3 cell and mouse model. European Food Research and Technology, 2021, 247, 1959-1974.	1.6	5
62	Effect of the structure and potential allergenicity of glycated tropomyosin, the shrimp allergen. International Journal of Food Science and Technology, 2022, 57, 1782-1790.	1.3	5
63	Optimization of preparative separation and purification of total polyphenols from Sargassum tenerrimum by column chromatography. Journal of Ocean University of China, 2009, 8, 425-430.	0.6	4
64	The effect of simulated gastrointestinal digestion on shrimp Penaeus vannamei allergenicity. Chinese Journal of Oceanology and Limnology, 2009, 27, 703-707.	0.7	4
65	Determination of microheterogeneous substitution in shrimp tropomyosin and its effect on lgE-binding capacity. European Food Research and Technology, 2014, 239, 941-949.	1.6	4
66	Advanced glycation endproducts in 35 types of seafood products consumed in eastern China. Journal of Ocean University of China, 2016, 15, 690-696.	0.6	4
67	Immunostimulatory and allergenic properties of emulsified and non-emulsified digestion products of parvalbumin (Scophthalmus maximus) in RBL-2H3 cells and BALB/c mouse models. Food and Function, 2021, 12, 5351-5360.	2.1	4
68	Comparison of immunological properties of recombinant and natural turbot (Scophthalmus maximus) parvalbumin. European Food Research and Technology, 2021, 247, 2053-2065.	1.6	4
69	Fish allergens of turbot (<i>Scophthalmus maximus</i>) parvalbumin triggers food allergy <i>via</i> inducing maturation of bone marrow derived dendritic cells and driving Th2 immune response. Food and Function, 2022, 13, 4194-4204.	2.1	4
70	The conformational structural change of β-lactoglobulin via acrolein treatment reduced the allergenicity. Food Chemistry: X, 2021, 10, 100120.	1.8	3
71	Immunological Cross-Reactivity Involving Mollusc Species and Mite–Mollusc and Cross-Reactive Allergen PM Are Risk Factors of Mollusc Allergy. Journal of Agricultural and Food Chemistry, 2022, 70, 360-372.	2.4	3
72	A sensitive sandwich enzymeâ€linked immunosorbent assay (sELISA) targeted multiple wheat protein fractions for the detection of several cereal grains in processed foods. Journal of Food Science, 2022, 87, 1514-1526.	1.5	3

#	Article	IF	CITATIONS
73	Development of a sandwich enzyme-linked immunosorbent kit for reliable detection of milk allergens in processed food. Analytical Biochemistry, 2022, 648, 114667.	1.1	3
74	A new method for the non-destructive determination of fish freshness by nuclear imaging. , 2011, , .		2
75	Preparation of soybean Î ² -conglycinin epitope antibody and its preliminary application in frozen surimi detection. European Food Research and Technology, 2021, 247, 1411-1423.	1.6	2
76	Development of a sensitive sandwich enzyme-linked immunosorbent assay test kit for reliable detection of peanut residues in processed food. European Food Research and Technology, 2022, 248, 273-282.	1.6	2
77	A new method for the non-destructive determination of fish freshness by nuclear imaging. Journal of Ocean University of China, 2005, 4, 240-243.	0.6	1
78	Comparative study on the allergenicity of different Litopenaeus vannamei extract solutions. Journal of Ocean University of China, 2014, 13, 157-162.	0.6	1
79	Process Optimization for Preparation of Hyaluronidase Inhibitory Hydrolysates with Anti-allergic Potential from Salmo salar Processing By-products. ACS Food Science & Technology, 2021, 1, 1262-1273.	1.3	1