Dragan B Ninkovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5481859/publications.pdf

Version: 2024-02-01

623734 752698 20 566 14 20 citations g-index h-index papers 21 21 21 641 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Two-dimensional halogen-bonded organic frameworks based on the tetrabromobenzene-1,4-dicarboxylic acid building molecule. CrystEngComm, 2020, 22, 24-34.	2.6	15
2	What Is Special about Aromatic–Aromatic Interactions? Significant Attraction at Large Horizontal Displacement. ACS Central Science, 2020, 6, 420-425.	11.3	44
3	How flexible is the water molecule structure? Analysis of crystal structures and the potential energy surface. Physical Chemistry Chemical Physics, 2020, 22, 4138-4143.	2.8	16
4	Phenol and Toluene Stacking Interactions, Including Interactions at Large Horizontal Displacements. Study of Crystal Structures and Calculation of Potential Energy Surfaces. Crystal Growth and Design, 2020, 20, 1025-1034.	3.0	15
5	Green Light-Responsive CO-Releasing Polymeric Materials Derived from Ring-Opening Metathesis Polymerization. ACS Applied Materials & Interfaces, 2019, 11, 34376-34384.	8.0	19
6	Unexpected Importance of Aromatic–Aliphatic and Aliphatic Side Chain–Backbone Interactions in the Stability of Amyloids. Chemistry - A European Journal, 2017, 23, 11046-11053.	3.3	12
7	Methane Activations by Titanium Neopentylidene Complexes: Electronic Resilience and Steric Control. Inorganic Chemistry, 2017, 56, 9264-9272.	4.0	7
8	Carbon-hydrogen bond activation by a titanium neopentylidene complex. Journal of Coordination Chemistry, 2016, 69, 1759-1768.	2.2	8
9	Aliphatic–aromatic stacking interactions in cyclohexane–benzene are stronger than aromatic–aromatic interaction in the benzene dimer. Physical Chemistry Chemical Physics, 2016, 18, 25791-25795.	2.8	46
10	Stacking of Metal Chelates with Benzene: Can Dispersionâ€Corrected DFT Be Used to Calculate Organic–Inorganic Stacking?. ChemPhysChem, 2015, 16, 761-768.	2.1	14
11	What are the preferred horizontal displacements of aromatic–aromatic interactions in proteins? Comparison with the calculated benzene–benzene potential energy surface. Physical Chemistry Chemical Physics, 2014, 16, 11173-11177.	2.8	48
12	Stacking of Benzene with Metal Chelates: Calculated CCSD(T)/CBS Interaction Energies and Potentialâ€Energy Curves. ChemPhysChem, 2014, 15, 2458-2461.	2.1	24
13	The influence of water molecule coordination onto the water–aromatic interaction. Strong interactions of water coordinating to a metal ion. CrystEngComm, 2013, 15, 2099.	2.6	15
14	Parallel Interactions at Large Horizontal Displacement in Pyridine–Pyridine and Benzene–Pyridine Dimers. ChemPhysChem, 2013, 14, 237-243.	2.1	45
15	Stacking Interactions of Ni(acac) Chelates with Benzene: Calculated Interaction Energies. ChemPhysChem, 2013, 14, 1797-1800.	2.1	16
16	Influence of supramolecular structures in crystals on parallel stacking interactions between pyridine molecules. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2013, 69, 389-394.	1.1	12
17	The influence of water molecule coordination to a metal ion on water hydrogen bonds. Physical Chemistry Chemical Physics, 2012, 14, 10896.	2.8	46
18	Crystallographic and <i>ab Initio</i> Study of Pyridine Stacking Interactions. Local Nature of Hydrogen Bond Effect in Stacking Interactions. Crystal Growth and Design, 2012, 12, 1060-1063.	3.0	71

#	Article	IF	CITATIONS
19	Geometries of stacking interactions between phenanthroline ligands in crystal structures of square-planar metal complexes. Journal of Molecular Modeling, 2011, 17, 2083-2092.	1.8	17
20	What Are the Preferred Horizontal Displacements in Parallel Aromatic–Aromatic Interactions? Significant Interactions at Large Displacements. ChemPhysChem, 2011, 12, 3511-3514.	2.1	76