Diana Maria Paola Galassi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5481683/publications.pdf

Version: 2024-02-01

95 papers 2,865 citations

28 h-index

206029 48 g-index

95 all docs 95 docs citations

95 times ranked 2110 citing authors

#	Article	IF	CITATIONS
1	The biology and ecology of lotic microcrustaceans. Freshwater Biology, 2000, 44, 63-91.	1.2	202
2	Scientists' Warning on the Conservation of Subterranean Ecosystems. BioScience, 2019, 69, 641-650.	2.2	170
3	Groundwater biodiversity in Europe. Freshwater Biology, 2009, 54, 709-726.	1.2	131
4	Diversity, ecology and evolution of groundwater copepods. Freshwater Biology, 2009, 54, 691-708.	1.2	124
5	Geographic variation in range size and beta diversity of groundwater crustaceans: insights from habitats with low thermal seasonality. Global Ecology and Biogeography, 2014, 23, 1135-1145.	2.7	123
6	Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation. Water (Switzerland), 2020, 12, 260.	1.2	117
7	Groundwater copepods: diversity patterns over ecological and evolutionary scales. Hydrobiologia, 2001, 453/454, 227-253.	1.0	93
8	Towards an optimal sampling strategy to assess groundwater biodiversity: comparison across six European regions. Freshwater Biology, 2009, 54, 777-796.	1.2	91
9	Stygobiotic crustacean species richness: a question of numbers, a matter of scale. Hydrobiologia, 2010, 653, 217-234.	1.0	86
10	Groundwater biodiversity patterns in the Lessinian Massif of northern Italy. Freshwater Biology, 2009, 54, 830-847.	1.2	70
11	Earthquakes trigger the loss of groundwater biodiversity. Scientific Reports, 2014, 4, 6273.	1.6	66
12	Longitudinal patterns of invertebrates in the hyporheic zone of a glacial river. Freshwater Biology, 2003, 48, 1709-1725.	1.2	65
13	Biodiversity indicators in European ground waters: towards a predictive model of stygobiotic species richness. Freshwater Biology, 2009, 54, 745-755.	1.2	51
14	Sensitivity of hypogean and epigean freshwater copepods to agricultural pollutants. Environmental Science and Pollution Research, 2014, 21, 4643-4655.	2.7	46
15	Don't forget subterranean ecosystems in climate change agendas. Nature Climate Change, 2021, 11, 458-459.	8.1	46
16	Agricultural impact on Mediterranean alluvial aquifers: do groundwater communities respond?. Fundamental and Applied Limnology, 2013, 182, 271-282.	0.4	44
17	Multiâ€causality and spatial nonâ€stationarity in the determinants of groundwater crustacean diversity in Europe. Ecography, 2015, 38, 531-540.	2.1	44

Towards a revision of the genus Parastenocaris Kessler, 1913: establishment of Simplicaris gen. nov. from groundwaters in central Italy and review of the P. brevipes -group (Copepoda, Harpacticoida,) Tj ETQq0 0 0 rg B.To/Overlock 10 Tf 50

#	Article	IF	Citations
19	Recommendations for ecotoxicity testing with stygobiotic species in the framework of groundwater environmental risk assessment. Science of the Total Environment, 2019, 681, 292-304.	3.9	43
20	Human alteration of groundwater–surface water interactions (Sagittario River, Central Italy): implication for flow regime, contaminant fate and invertebrate response. Environmental Earth Sciences, 2014, 71, 1791-1807.	1.3	41
21	Towards evidenceâ€based conservation of subterranean ecosystems. Biological Reviews, 2022, 97, 1476-1510.	4.7	39
22	Ecological risk assessment of pesticide mixtures in the alluvial aquifers of central Italy: Toward more realistic scenarios for risk mitigation. Science of the Total Environment, 2018, 644, 161-172.	3.9	36
23	Effect of Temperature Rising on the Stygobitic Crustacean Species Diacyclops belgicus: Does Global Warming Affect Groundwater Populations?. Water (Switzerland), 2017, 9, 951.	1.2	33
24	The role of freshwater copepods in the environmental risk assessment of caffeine and propranolol mixtures in the surface water bodies of Spain. Chemosphere, 2019, 220, 227-236.	4.2	33
25	Brazilian cave heritage under siege. Science, 2022, 375, 1238-1239.	6.0	32
26	Nitrate source and fate at the catchment scale of the Vibrata River and aquifer (central Italy): an analysis by integrating component approaches and nitrogen isotopes. Environmental Earth Sciences, 2012, 67, 2383-2398.	1.3	31
27	Island biogeography of insect conservation in urban green spaces. Environmental Conservation, 2018, 45, 1-10.	0.7	31
28	A conservation roadmap for the subterranean biome. Conservation Letters, 2021, 14, e12834.	2.8	31
29	The dark side of springs: what drives small-scale spatial patterns of subsurface meiofaunal assemblages?. Journal of Limnology, 2014, 73, .	0.3	30
30	Metabolic rates of a hypogean and an epigean species of copepod in an alluvial aquifer. Freshwater Biology, 2015, 60, 426-435.	1.2	30
31	Groundwater biodiversity in a chemoautotrophic cave ecosystem: how geochemistry regulates microcrustacean community structure. Aquatic Ecology, 2017, 51, 75-90.	0.7	30
32	Incorporating the hyporheic zone within the river discontinuum: Longitudinal patterns of subsurface copepod assemblages in an Alpine stream. Limnologica, 2013, 43, 288-296.	0.7	29
33	Phylogeny and biogeography of the genus Pseudectinosoma, and description of P. janineae sp. n. (Crustacea, Copepoda, Ectinosomatidae). Zoologica Scripta, 1999, 28, 289-303.	0.7	28
34	Jumping into the grids: mapping biodiversity hotspots in groundwater habitat types across Europe. Ecography, 2020, 43, 1825-1841.	2.1	28
35	Occurrence of volatile organic compounds in shallow alluvial aquifers of a Mediterranean region: Baseline scenario and ecological implications. Science of the Total Environment, 2015, 538, 712-723.	3.9	27
36	Trapped in the web of water: Groundwaterâ€fed springs are islandâ€like ecosystems for the meiofauna. Ecology and Evolution, 2016, 6, 8389-8401.	0.8	27

#	Article	IF	CITATIONS
37	Relative Sensitivity of Hyporheic Copepods to Chemicals. Bulletin of Environmental Contamination and Toxicology, 2009, 82, 488-491.	1.3	26
38	Environmental risk assessment of propranolol in the groundwater bodies of Europe. Environmental Pollution, 2019, 255, 113189.	3.7	24
39	Developmental endpoints of chronic exposure to suspected endocrine-disrupting chemicals on benthic and hyporheic freshwater copepods. Ecotoxicology and Environmental Safety, 2013, 96, 86-92.	2.9	23
40	Temperature effect on the sensitivity of the copepod Eucyclops serrulatus (Crustacea, Copepoda,) Tj ETQq0 0 0 rg 629-640.	gBT /Overl 0.9	ock 10 Tf 50 22
41	The ecotoxicity of binary mixtures of Imazamox and ionized ammonia on freshwater copepods: Implications for environmental risk assessment in groundwater bodies. Ecotoxicology and Environmental Safety, 2018, 149, 72-79.	2.9	21
42	Groundwater copepods: diversity patterns over ecological and evolutionary scales., 2001,, 227-253.		21
43	Groundwater drift monitoring as a tool to assess the spatial distribution of groundwater species into karst aquifers. Hydrobiologia, 2018, 813, 137-156.	1.0	20
44	Getting the â€~most out of the hotspot' for practical conservation of groundwater biodiversity. Global Ecology and Conservation, 2021, 31, e01844.	1.0	20
45	Dual-flow in karst aquifers toward a steady discharge spring (Presciano, Central Italy): influences on a subsurface groundwater dependent ecosystem and on changes related to post-earthquake hydrodynamics. Environmental Earth Sciences, 2015, 73, 2609-2625.	1.3	19
46	Role of urban green spaces for saproxylic beetle conservation: a case study of tenebrionids in Rome, Italy. Journal of Insect Conservation, 2016, 20, 737-745.	0.8	19
47	Earthquake-Related Changes in Species Spatial Niche Overlaps in Spring Communities. Scientific Reports, 2017, 7, 443.	1.6	19
48	Earthquake impacts on microcrustacean communities inhabiting groundwater-fed springs alter species-abundance distribution patterns. Scientific Reports, 2018, 8, 1501.	1.6	19
49	Ecology-based evaluation of groundwater ecosystems under intensive agriculture: A combination of community analysis and sentinel exposure. Science of the Total Environment, 2018, 613-614, 1353-1366.	3.9	19
50	Assessing invertebrate assemblages in the subsurface zone of stream sediments (0-15 cm deep) using a hyporheic sampler. Water Resources Research, 2014, 50, 453-465.	1.7	17
51	Marble Slurry's Impact on Groundwater: The Case Study of the Apuan Alps Karst Aquifers. Water (Switzerland), 2019, 11, 2462.	1.2	17
52	A new protocol for assessing the conservation priority of groundwaterâ€dependent ecosystems. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 1483-1504.	0.9	17
53	Little Known Harpacticoid Copepods From Italy, and Description of Parastenocaris Crenobia N. Sp. (Copepoda, Harpacticoida). Crustaceana, 1997, 70, 694-709.	0.1	16
54	Do benthic invertebrates use hyporheic refuges during streambed drying? A manipulative field experiment in nested hyporheic flowpaths. Ecohydrology, 2017, 10, e1865.	1.1	16

#	Article	IF	Citations
55	Taxonomic and functional trait variation along a gradient of ammonium contamination in the hyporheic zone of a Mediterranean stream. Ecological Indicators, 2021, 132, 108268.	2.6	16
56	Title is missing!. Hydrobiologia, 1999, 412, 177-189.	1.0	15
57	Systematics of the Phyllognathopodidae (Copepoda, Harpacticoida): re-examination of Phyllognathopus viguieri (Maupas, 1892) and Parbatocamptus jochenmartensi Dumont and Maas, 1988, proposal of a new genus for Phyllognathopus bassoti Rouch, 1972, and description of a new species of Phyllognathopus. ZooKevs. 2011. 104. 1-65.	0.5	14
58	Characterization of Macroinvertebrate Communities in the Hyporheic Zone of River Ecosystems Reflects the Pump-Sampling Technique Used. PLoS ONE, 2016, 11, e0164372.	1.1	14
59	AQUALIFE Software: A New Tool for a Standardized Ecological Assessment of Groundwater Dependent Ecosystems. Water (Switzerland), 2019, 11, 2574.	1.2	14
60	Spatial distribution of stygobitic crustacean harpacticoids at the boundaries of groundwater habitat types in Europe. Scientific Reports, 2020, 10, 19043.	1.6	14
61	New or rare species of Diacyclops Kiefer, 1927 (Copepoda, Cyclopoida) from different groundwater habitats in Italy. Hydrobiologia, 1987, 148, 103-114.	1.0	13
62	Test procedures for measuring the (sub)chronic effects of chemicals on the freshwater cyclopoid Eucyclops serrulatus. Chemosphere, 2017, 173, 89-98.	4.2	13
63	Two new species ofNitocrellafrom groundwaters of Italy (Crustacea, Copepoda, Harpacticoida). Italian Journal of Zoology, 1997, 64, 367-376.	0.6	12
64	The impact of nitrate on the groundwater assemblages of European unconsolidated aquifers is likely less severe than expected. Environmental Science and Pollution Research, 2021, 28, 11518-11527.	2.7	12
65	Effect of ammonia on the gene expression levels of the freshwater cyclopoid Eucyclops serrulatus. Environmental Toxicology and Pharmacology, 2017, 51, 138-141.	2.0	11
66	The weighted Groundwater Health Index (wGHI) by Korbel and Hose (2017) in European groundwater bodies in nitrate vulnerable zones. Ecological Indicators, 2020, 116, 106525.	2.6	11
67	Effects of diclofenac on the swimming behavior and antioxidant enzyme activities of the freshwater interstitial crustacean Bryocamptus pygmaeus (Crustacea, Harpacticoida). Science of the Total Environment, 2021, 799, 149461.	3.9	11
68	The genus Pseudectinosoma KUNZ, 1935: an update, and description of Pseudectinosoma kunzi sp. n. from Italy (Crustacea: Copepoda: Ectinosomatidae). Archiv Für Hydrobiologie, 1997, 139, 277-287.	1.1	11
69	Parastenocaris lorenzae n.sp., and first record of Parastenocaris glacialis Noodt (Copepoda,) Tj ETQq1 1 0.7843	14 rgBT /C	overlock 10 Tf
70	Exploring copepod distribution patterns at three nested spatial scales in a spring system: habitat partitioning and potential for hydrological bioindication. Journal of Limnology, 0, , .	0.3	10
71	Biodiversity in mountain groundwater: the Mercantour National Park (France) as a European hotspot. Zoosystema, 2015, 37, 529-550.	0.2	10
72	Bioenergetic cost of living in polluted freshwater bodies: respiration rates of the cyclopoid Eucyclops serrulatus under ammonia-N exposures. Fundamental and Applied Limnology, 2016, 188, 147-156.	0.4	10

#	Article	IF	CITATIONS
73	Potential of A Trait-Based Approach in the Characterization of An N-Contaminated Alluvial Aquifer. Water (Switzerland), 2019, 11, 2553.	1.2	10
74	Title is missing!. , 1997, 356, 81-86.		9
75	Evaluation of the sources of nitrogen compounds and their influence on the biological communities in the hyporheic zone of the Sagittario River, Italy: an isotopic and biological approac. Italian Journal of Geosciences, 2017, 136, 145-156.	0.4	9
76	When human needs meet beetle preferences: tenebrionid beetle richness covaries with human population on the Mediterranean islands. Insect Conservation and Diversity, 2016, 9, 369-373.	1.4	8
77	An Overview of Studies on Meiofaunal Traits of the Littoral Zone of Lakes. Water (Switzerland), 2021, 13, 473.	1.2	8
78	Dissecting copepod diversity at different spatial scales in southern European groundwater. Journal of Natural History, 2013, 47, 821-840.	0.2	6
79	Genomic Resources Notes Accepted 1 October 2014-30 November 2014. Molecular Ecology Resources, 2015, 15, 458-459.	2.2	6
80	Linking Hydrogeology and Ecology in Karst Landscapes: The Response of Epigean and Obligate Groundwater Copepods (Crustacea: Copepoda). Water (Switzerland), 2021, 13, 2106.	1.2	6
81	Assessment of Different Contaminants in Freshwater: Origin, Fate and Ecological Impact. Water (Switzerland), 2020, 12, 1810.	1.2	5
82	Drivers of functional diversity in the hyporheic zone of a large river. Science of the Total Environment, 2022, 843, 156985.	3.9	5
83	Crustaceana, 1991, 60, 1-6.	0.1	4
84	A new family Lepidocharontidae with description of Lepidocharon gen. n., from the Great Barrier Reef, Australia, and redefinition of the Microparasellidae (Isopoda, Asellota). ZooKeys, 2016, 594, 11-50.	0.5	4
85	Elaphoidella plesain. sp., from ground waters of Austria (Copepoda Harpacticoida : Canthocamptidae). Annales De Limnologie, 1994, 30, 91-94.	0.6	3
86	Stygobiotic crustacean species richness: a question of numbers, a matter of scale., 2010,, 217-234.		3
87	First Record of Diacyclops Hypnicola (Gurney, 1927) (Copepoda, Cyclopidae) From North America. Crustaceana, 1991, 60, 319-321.	0.1	2
88	Metacyclops Geltrudeae N. Sp., a New Cyclopid From Ground Waters of Venezuela (Copepoda,) Tj ETQq0 0 0 rgB	T Overloc	ck <u>1</u> 0 Tf 50 14
89	Microcharon novariensis, a new microparasellid isopod from groundwater in Italy (Crustacea,) Tj ETQq1 1 0.7843	14 rgBT /0	Overlock 10 T
90	Discovery of the First Representative of the Genus Neocyclops Gurney (Copepoda, Halicyclopinae) in	0.1	1

#	Article	IF	CITATIONS
91	Reply to comment by James W. Roy and Serban Danielescu on "Assessing invertebrate assemblages in the subsurface zone of stream sediments (0–15 cm deep) using a hyporheic sampler― Water Resources Research, 2014, 50, 9124-9125.	1.7	1
92	How far may life venture? Observations on the harpacticoid copepod Phyllognathopus viguieri under extreme stress conditions. Aquatic Ecology, 2019, 53, 629-637.	0.7	1
93	Patterns Of Copepod Diversity (Copepoda: Cyclopoida, Harpacticoida) In Springs Of Central Italy: Implications For Conservation Issues. , 0, , 199-226.		1
94	Discovery of a new species of the genus Stygepactophanes from a groundwater-fed spring in southern France (Crustacea, Copepoda, Harpacticoida, Canthocamptidae). ZooKeys, 2019, 812, 69-91.	0.5	1
95	The Influence of the Recording Time in Modelling the Swimming Behaviour of the Freshwater Inbenthic Copepod Bryocamptus pygmaeus. Water (Switzerland), 2022, 14, 1996.	1.2	1