Valentin Ananikov

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5481323/valentin-ananikov-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

301	12,357	58	103
papers	citations	h-index	g-index
383 ext. papers	14,513 ext. citations	7.1 avg, IF	7.48 L-index

#	Paper	IF	Citations
301	Nickel and Palladium Catalysis: Stronger Demand than Ever. ACS Catalysis, 2022, 12, 1180-1200	13.1	6
300	Generation, regeneration, and recovery of Cu catalytic system by changing the polarity of electrodes. <i>Green Chemistry</i> , 2022 , 24, 1132-1140	10	1
299	Merging structural frameworks of imidazolium, pyridinium, and cholinium ionic liquids with cinnamic acid to tune solution state behavior and properties. <i>Journal of Molecular Liquids</i> , 2022 , 118673	3 6	O
298	Metal-catalyzed chemical activation of calcium carbide: New way to hierarchical metal/alloy-on-carbon catalysts. <i>Journal of Catalysis</i> , 2022 , 407, 281-281	7.3	0
297	Exploring metallic and plastic 3D printed photochemical reactors for customizing chemical synthesis <i>Scientific Reports</i> , 2022 , 12, 3780	4.9	1
296	Preparation of Hybrid Sol-Gel Materials Based on Living Cells of Microorganisms and Their Application in Nanotechnology <i>Nanomaterials</i> , 2022 , 12,	5.4	1
295	Comparative assessment of heterogeneous and homogeneous Suzuki-Miyaura catalytic reactions using bio-Profiles and bio-Factors. <i>Journal of Organometallic Chemistry</i> , 2022 , 965-966, 122319	2.3	O
294	How to Make a Cocktail of Palladium Catalysts with Cola and Alcohol: Heteroatom Doping vs. Nanoscale Morphology of Carbon Supports. <i>Nanomaterials</i> , 2021 , 11,	5.4	2
293	Electrochemical Etching of Germanium in Ionic Liquids without the Use of Toxic and Corrosive Reagents. <i>ChemNanoMat</i> , 2021 , 7, 1355	3.5	O
292	Intermolecular Diels-Alder Cycloadditions of Furfural-Based Chemicals from Renewable Resources: A Focus on the Regio- and Diastereoselectivity in the Reaction with Alkenes. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	5
291	Introduction to Dynamic Catalysis and the Interface Between Molecular and Heterogeneous Catalysts 2021 , 13-42		1
290	Neural Network Analysis of Electron Microscopy Video Data Reveals the Temperature-Driven Microphase Dynamics in the Ions/Water System. <i>Small</i> , 2021 , 17, e2007726	11	0
289	Detection and Structural Investigation of Elusive Palladium Hydride Intermediates Formed from Simple Metal Salts. <i>Inorganic Chemistry</i> , 2021 , 60, 7128-7142	5.1	1
288	ESI-MS Analysis of Thiol-yne Click Reaction in Petroleum Medium. <i>Molecules</i> , 2021 , 26,	4.8	1
287	Formation and stabilization of nanosized Pd particles in catalytic systems: Ionic nitrogen compounds as catalytic promoters and stabilizers of nanoparticles. <i>Coordination Chemistry Reviews</i> , 2021 , 437, 213860	23.2	13
286	Systematic Study of Aromatic-Ring-Targeted Cycloadditions of 5-Hydroxymethylfurfural Platform Chemicals. <i>ChemSusChem</i> , 2021 , 14, 3110-3123	8.3	3
285	Comparing Separation vs. Fresh Start to Assess Reusability of Pd/C Catalyst in Liquid-Phase Hydrogenation. <i>ChemCatChem</i> , 2021 , 13, 3656-3661	5.2	2

(2021-2021)

284	Quaternary Ammonium Compounds (QACs) and Ionic Liquids (ILs) as Biocides: From Simple Antiseptics to Tunable Antimicrobials. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	31
283	One-Pot and Two-Chamber Methodologies for Using Acetylene Surrogates in the Synthesis of Pyridazines and Their D-Labeled Derivatives. <i>Chemistry - an Asian Journal</i> , 2021 , 16, 2286-2297	4.5	3
282	Nanoscale Advancement Continues-From Catalysts and Reagents to Restructuring of Reaction Media. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 18926-18928	16.4	О
281	Unusual Effect of Impurities on the Spectral Characterization of 1,2,3-Triazoles Synthesized by the Cu-Catalyzed Azide-Alkyne Click Reaction. <i>Journal of Organic Chemistry</i> , 2021 , 86, 11456-11463	4.2	3
280	Nanoscale Advancement Continues From Catalysts and Reagents to Restructuring of Reaction Media. <i>Angewandte Chemie</i> , 2021 , 133, 19074-19076	3.6	О
279	Visualization of catalyst dynamics and development of a practical procedure to study complex "cocktail"-type catalytic systems. <i>Faraday Discussions</i> , 2021 , 229, 458-474	3.6	9
278	Synergistic/antagonistic cytotoxic effects in mixtures of ionic liquids with doxorubicin or mitoxantrone. <i>Journal of Molecular Liquids</i> , 2021 , 323, 114870	6	4
277	Catalytic C-H Functionalization of Unreactive Furan Cores in Bio-Derived Platform Chemicals. <i>ChemSusChem</i> , 2021 , 14, 558-568	8.3	5
276	Comparative study of aryl halides in Pd-mediated reactions: key factors beyond the oxidative addition step. <i>Inorganic Chemistry Frontiers</i> , 2021 , 8, 620-635	6.8	10
275	Visualization of the Mechanical Wave Effect on Liquid Microphases and Its Application for the Tuning of Dissipative Soft Microreactors. <i>Jacs Au</i> , 2021 , 1, 87-97		4
274	NMR Parameters of Imidazolium Ionic Liquids as Indicators of Their State and Properties in Aqueous Solutions. <i>Journal of Solution Chemistry</i> , 2021 , 50, 90-104	1.8	2
273	New Bio-Based Furanic Materials Effectively Absorb Metals from Water and Exert Antimicrobial Activity. <i>Chemistry - A European Journal</i> , 2021 , 27, 3382-3396	4.8	2
272	Sustainable Hydrogenation of Vinyl Derivatives Using Pd/C Catalysts. <i>Catalysts</i> , 2021 , 11, 179	4	1
271	Biomass- and calcium carbide-based recyclable polymers. <i>Green Chemistry</i> , 2021 , 23, 2487-2495	10	3
270	Deep neural network analysis of nanoparticle ordering to identify defects in layered carbon materials. <i>Chemical Science</i> , 2021 , 12, 7428-7441	9.4	2
269	Biomass-Derived Ionic Liquids Based on a 5-HMF Platform Chemical: Synthesis, Characterization, Biological Activity, and Tunable Interactions at the Molecular Level. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 3552-3570	8.3	9
268	Biobased C6-Furans in Organic Synthesis and Industry: Cycloaddition Chemistry as a Key Approach to Aromatic Building Blocks. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 3011-3042	8.3	18
267	Tri-tert-butyl(n-alkyl)phosphonium Ionic Liquids: Structure, Properties and Application as Hybrid Catalyst Nanomaterials. <i>Sustainability</i> , 2021 , 13, 9862	3.6	3

266	3D Printing to Increase the Flexibility of the Chemical Synthesis of Biologically Active Molecules: Design of On-Demand Gas Generation Reactors. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	1
265	Development of 3D+G Printing for the Design of Customizable Flow Reactors. <i>Chemical Engineering Journal</i> , 2021 , 132670	14.7	3
264	Transition metal BocktailEtype catalysis. <i>Current Opinion in Green and Sustainable Chemistry</i> , 2021 , 31, 100502	7.9	7
263	Metal nanoparticles in ionic liquids: Synthesis and catalytic applications. <i>Coordination Chemistry Reviews</i> , 2021 , 445, 213982	23.2	16
262	Ionic liquids: prospects for nucleic acid handling and delivery. <i>Nucleic Acids Research</i> , 2021 , 49, 1201-123	3 4 0.1	7
261	A large-scale study of ionic liquids employed in chemistry and energy research to reveal cytotoxicity mechanisms and to develop a safe design guide. <i>Green Chemistry</i> , 2021 , 23, 6414-6430	10	6
260	Different effects of metal-NHC bond cleavage on the Pd/NHC and Ni/NHC catalyzed Harylation of ketones with aryl halides. <i>Inorganic Chemistry Frontiers</i> , 2021 , 8, 1511-1527	6.8	5
259	Organocatalytic Deuteration Induced by the Dynamic Covalent Interaction of Imidazolium Cations with Ketones. <i>Advanced Synthesis and Catalysis</i> , 2021 , 363, 1368-1378	5.6	3
258	Building bio-Profiles for common catalytic reactions. <i>Green Chemistry</i> , 2021 , 23, 6373-6391	10	1
257	Calcium Carbide: Versatile Synthetic Applications, Green Methodology and Sustainability. <i>European Journal of Organic Chemistry</i> , 2021 , 2021, 43-52	3.2	13
256	Sterically Hindered Quaternary Phosphonium Salts (QPSs): Antimicrobial Activity and Hemolytic and Cytotoxic Properties <i>International Journal of Molecular Sciences</i> , 2021 , 23,	6.3	3
255	The Increasing Value of Biomass: Moving From C6 Carbohydrates to Multifunctionalized Building Blocks via 5-(hydroxymethyl)furfural. <i>ChemistryOpen</i> , 2020 , 9, 1135-1148	2.3	8
254	Porous Silicon Preparation by Electrochemical Etching in Ionic Liquids. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 10259-10264	8.3	5
253	Primary Vinyl Ethers as Acetylene Surrogate: A Flexible Tool for Deuterium-Labeled Pyrazole Synthesis. <i>European Journal of Organic Chemistry</i> , 2020 , 2020, 4571-4580	3.2	5
252	The key role of R-NHC coupling (R = C, H, heteroatom) and M-NHC bond cleavage in the evolution of M/NHC complexes and formation of catalytically active species. <i>Chemical Science</i> , 2020 , 11, 6957-697	7 9·4	43
251	Ambident Reactivity of Imidazolium Cations as Evidence of the Dynamic Nature of N-Heterocyclic Carbene-Mediated Organocatalysis. <i>Chemistry - A European Journal</i> , 2020 , 26, 8567-8571	4.8	3
250	Solution processed CZTS solar cells using aminethiol systems: understanding the dissolution process and device fabrication. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 10309-10318	7.1	2
249	Recent advances in applications of vinyl ether monomers for precise synthesis of custom-tailored polymers. <i>European Polymer Journal</i> , 2020 , 136, 109872	5.2	15

(2020-2020)

248	Carbocatalytic Acetylene Cyclotrimerization: A Key Role of Unpaired Electron Delocalization. Journal of the American Chemical Society, 2020 , 142, 3784-3796	16.4	11	
247	Calcium Carbide Looping System for Acetaldehyde Manufacturing from Virtually any Carbon Source. <i>ChemSusChem</i> , 2020 , 13, 3679-3685	8.3	9	
246	Electron microscopy dataset for the recognition of nanoscale ordering effects and location of nanoparticles. <i>Scientific Data</i> , 2020 , 7, 101	8.2	4	
245	Examining the vinyl moiety as a protecting group for hydroxyl (DH) functionality under basic conditions. <i>Organic Chemistry Frontiers</i> , 2020 , 7, 1334-1342	5.2	8	
244	2-Carboxyethylgermanium Sesquioxide as A Promising Anode Material for Li-Ion Batteries. <i>ChemSusChem</i> , 2020 , 13, 3137-3146	8.3	9	
243	Widely accessible 3D printing technologies in chemistry, biochemistry and pharmaceutics: applications, materials and prospects. <i>Russian Chemical Reviews</i> , 2020 , 89, 1507-1561	6.8	19	
242	Assessing possible influence of structuring effects in solution on cytotoxicity of ionic liquid systems. <i>Journal of Molecular Liquids</i> , 2020 , 297, 111751	6	11	
241	Preventing PdNHC bond cleavage and switching from nano-scale to molecular catalytic systems: amines and temperature as catalyst activators. <i>Catalysis Science and Technology</i> , 2020 , 10, 1228-1247	5.5	13	
240	An environment-friendly approach to produce nanostructured germanium anodes for lithium-ion batteries. <i>Green Chemistry</i> , 2020 , 22, 359-367	10	17	
239	Efficient labeling of organic molecules using 13C elemental carbon: universal access to 13C2-labeled synthetic building blocks, polymers and pharmaceuticals. <i>Organic Chemistry Frontiers</i> , 2020 , 7, 638-647	5.2	17	
238	Introducing tox-Profiles of Chemical Reactions. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 22296-22305	16.4	8	
237	Understanding the solubilization of Ca acetylide with a new computational model for ionic pairs. <i>Chemical Science</i> , 2020 , 11, 13102-13112	9.4	3	
236	Introducing tox-Profiles of Chemical Reactions. <i>Angewandte Chemie</i> , 2020 , 132, 22480-22489	3.6		
235	Stabilization of phosphorus in (1,2,3,4,5-pentaphenylphosphole)palladium. <i>Russian Chemical Bulletin</i> , 2020 , 69, 1185-1188	1.7	3	
234	Solid-State C-S Coupling in Nickel Organochalcogenide Frameworks as a Route to Hierarchical Structure Transfer to Binary Nanomaterials. <i>Inorganic Chemistry</i> , 2020 , 59, 10835-10844	5.1	2	
233	Selectivity control in thiol-yne click reactions visible light induced associative electron upconversion. <i>Chemical Science</i> , 2020 , 11, 10061-10070	9.4	21	
232	Application of Ni-based metal-organic framework as heterogeneous catalyst for disulfide addition to acetylene. <i>Catalysis Communications</i> , 2020 , 146, 106119	3.2	0	
231	Carbocatalysis: From Acetylene Trimerization to Modern Organic Synthesis. A Review. <i>Doklady Physical Chemistry</i> , 2020 , 493, 95-122	0.8	1	

230	Comprehensive Mass Spectrometric Mapping of Chemical Compounds for the Development of Algorithms for Machine Learning and Artificial Intelligence. <i>Doklady Physical Chemistry</i> , 2020 , 492, 51-56	0.8	1
229	Mechanistic Study of Pd/NHC-Catalyzed Sonogashira Reaction: Discovery of NHC-Ethynyl Coupling Process. <i>Chemistry - A European Journal</i> , 2020 , 26, 15672-15681	4.8	3
228	Proton-deuterium exchange of acetone catalyzed in imidazolium-based ionic liquid-DO mixtures <i>RSC Advances</i> , 2020 , 10, 32485-32489	3.7	5
227	Directing-Group-Free, Carbonyl Group-Promoted Catalytic CH Arylation of Bio-Based Furans. <i>ACS Catalysis</i> , 2020 , 10, 11466-11480	13.1	4
226	Controlled Natural Biomass Deoxygenation Allows the Design of Reusable Hot-Melt Adhesives Acting in a Multiple Oxygen Binding Mode. <i>ACS Applied Materials & Design of Reusable Hot-Melt Adhesives Acting in a Multiple Oxygen Binding Mode. ACS Applied Materials & Design of Reusable Hot-Melt Adhesives Acting in a Multiple Oxygen Binding Mode. <i>ACS Applied Materials & Design of Reusable Hot-Melt Adhesives Acting in a Multiple Oxygen Binding Mode. ACS Applied Materials & Design of Reusable Hot-Melt Adhesives Acting in a Multiple Oxygen Binding Mode. <i>ACS Applied Materials & Design of Reusable Hot-Melt Adhesives Acting in a Multiple Oxygen Binding Mode. ACS Applied Materials & Design of Reusable Hot-Melt Adhesives Acting in a Multiple Oxygen Binding Mode. <i>ACS Applied Materials & Design of Reusable Hot-Melt Adhesives Acting Binding Mode. ACS Applied Materials & Design of Reusable Hot-Melt Adhesives Acting Binding Mode. ACS Applied Materials & Design of Reusable Hot-Melt Adhesives Acting Binding Mode. ACS Applied Materials & Design of Reusable Hot-Melt Adhesives Acting Binding Mode. ACS Applied Materials & Design of Reusable Hot-Melt Adhesives Acting Binding Bindi</i></i></i></i>	93 ⁵	6
225	Pd-Catalyzed Synthesis of Densely Functionalized Cyclopropyl Vinyl Sulfides Reveals the Origin of High Selectivity in a Fundamental Alkyne Insertion Step. <i>ACS Catalysis</i> , 2020 , 10, 9872-9888	13.1	6
224	Sterically Hindered Phosphonium Salts: Structure, Properties and Palladium Nanoparticle Stabilization. <i>Nanomaterials</i> , 2020 , 10,	5.4	5
223	Addressing Reversibility of R-NHC Coupling on Palladium: Is Nano-to-Molecular Transition Possible for the Pd/NHC System?. <i>Inorganic Chemistry</i> , 2019 , 58, 12218-12227	5.1	10
222	In situ transformations of Pd/NHC complexes with N-heterocyclic carbene ligands of different nature into colloidal Pd nanoparticles. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 482-492	6.8	18
221	Synthesis of 2-Azidomethyl-5-ethynylfuran: A New Bio-Derived Self-Clickable Building Block. <i>Synthesis</i> , 2019 , 51, 1235-1242	2.9	9
220	A tunable precious metal-free system for selective oxidative esterification of biobased 5-(hydroxymethyl)furfural. <i>Green Chemistry</i> , 2019 , 21, 3464-3468	10	19
219	When Will 5-Hydroxymethylfurfural, the "Sleeping Giant" of Sustainable Chemistry, Awaken?. <i>ChemSusChem</i> , 2019 , 12, 2976-2982	8.3	78
218	Pseudo-Solid-State SuzukiMiyaura Reaction and the Role of Water Formed by Dehydration of Arylboronic Acids. <i>European Journal of Organic Chemistry</i> , 2019 , 2019, 4239-4247	3.2	17
217	Direct Synthesis of Deuterium-Labeled O-, S-, N-Vinyl Derivatives from Calcium Carbide. <i>Synthesis</i> , 2019 , 51, 3001-3013	2.9	19
216	Applying Green Metrics to Eco-Friendly Synthesis of Sulfur-Substituted Conjugated Dienes Based on Atom-Economic Hydrothiolation. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 9680-9689	8.3	14
215	Modeling Key Pathways Proposed for the Formation and Evolution of Cocktail Type Systems in Pd-Catalyzed Reactions Involving ArX Reagents. <i>ACS Catalysis</i> , 2019 , 9, 3991-4005	13.1	40
214	Pd and Pt Catalyst Poisoning in the Study of Reaction Mechanisms: What Does the Mercury Test Mean for Catalysis?. <i>ACS Catalysis</i> , 2019 , 9, 2984-2995	13.1	43
213	Phantom Reactivity in Organic and Catalytic Reactions as a Consequence of Microscale Destruction and Contamination-Trapping Effects of Magnetic Stir Bars. <i>ACS Catalysis</i> , 2019 , 9, 3070-3081	13.1	61

(2018-2019)

212	Calcium-Based Sustainable Chemical Technologies for Total Carbon Recycling. <i>ChemSusChem</i> , 2019 , 12, 1483-1516	8.3	51
211	Fast and Convenient Method For FE-SEM Characterization of Microstructured Organic Solutions in lonic Liquids. <i>Microscopy and Microanalysis</i> , 2019 , 25, 67-68	0.5	
210	Catalytic Transfer Hydrodebenzylation with Low Palladium Loading. <i>Advanced Synthesis and Catalysis</i> , 2019 , 361, 4781-4789	5.6	8
209	Ionic Pd/NHC Catalytic System Enables Recoverable Homogeneous Catalysis: Mechanistic Study and Application in the Mizoroki-Heck Reaction. <i>Chemistry - A European Journal</i> , 2019 , 25, 16439	4.8	
208	Ionic Pd/NHC Catalytic System Enables Recoverable Homogeneous Catalysis: Mechanistic Study and Application in the Mizoroki-Heck Reaction. <i>Chemistry - A European Journal</i> , 2019 , 25, 16564	4.8	24
207	OX-1 Metal©rganic Framework Nanosheets as Robust Hosts for Highly Active Catalytic Palladium Species. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 5875-5885	8.3	11
206	Evaluation of phytotoxicity and cytotoxicity of industrial catalyst components (Fe, Cu, Ni, Rh and Pd): A case of lethal toxicity of a rhodium salt in terrestrial plants. <i>Chemosphere</i> , 2019 , 223, 738-747	8.4	4
205	Monitoring chemical reactions in liquid media using electron microscopy. <i>Nature Reviews Chemistry</i> , 2019 , 3, 624-637	34.6	33
204	Revealing interactions of layered polymeric materials at solid-liquid interface for building solvent compatibility charts for 3D printing applications. <i>Scientific Reports</i> , 2019 , 9, 20177	4.9	35
203	Relative stabilities of M/NHC complexes (M = Ni, Pd, Pt) against R-NHC, X-NHC and X-X couplings in $M(0)/M(ii)$ and $M(ii)/M(iv)$ catalytic cycles: a theoretical study. <i>Dalton Transactions</i> , 2019 , 48, 17052-170	6 2 .3	7
202	Switchable Ni-catalyzed bis-thiolation of acetylene with aryl disulfides as an access to functionalized alkenes and 1,3-dienes. <i>Applied Catalysis A: General</i> , 2019 , 571, 170-179	5.1	11
201	Towards Improved Biorefinery Technologies: 5-Methylfurfural as a Versatile C Platform for Biofuels Development. <i>ChemSusChem</i> , 2019 , 12, 185-189	8.3	27
200	Switching the nature of catalytic centers in Pd/NHC systems by solvent effect driven non-classical R-NHC Coupling. <i>Journal of Computational Chemistry</i> , 2019 , 40, 191-199	3.5	8
199	Fast and Slow Release of Catalytically Active Species in Metal/NHC Systems Induced by Aliphatic Amines. <i>Organometallics</i> , 2018 , 37, 1483-1492	3.8	35
198	"Solvent-in-salt" systems for design of new materials in chemistry, biology and energy research. <i>Chemical Society Reviews</i> , 2018 , 47, 1250-1284	58.5	101
197	Ionic liquids in whole-cell biocatalysis: a compromise between toxicity and efficiency. <i>Biophysical Reviews</i> , 2018 , 10, 881-900	3.7	31
196	[3 + 2]-Cycloaddition of in Situ Generated Nitrile Imines and Acetylene for Assembling of 1,3-Disubstituted Pyrazoles with Quantitative Deuterium Labeling. <i>Journal of Organic Chemistry</i> , 2018 , 83, 3819-3828	4.2	50
195	Rapid Mix-and-Stir Preparation of Well-Defined Palladium on Carbon Catalysts for Efficient Practical Use. <i>ChemCatChem</i> , 2018 , 10, 1869-1873	5.2	27

194	Micro-scale processes occurring in ionic liquid water phases during extraction. <i>Separation and Purification Technology</i> , 2018 , 196, 318-326	8.3	14
193	Calcium-mediated one-pot preparation of isoxazoles with deuterium incorporation. <i>Organic Chemistry Frontiers</i> , 2018 , 5, 226-231	5.2	33
192	A Green and Sustainable Route to Carbohydrate Vinyl Ethers for Accessing Bioinspired Materials with a Unique Microspherical Morphology. <i>ChemSusChem</i> , 2018 , 11, 292-298	8.3	23
191	Exploring the performance of nanostructured reagents with organic-group-defined morphology in cross-coupling reaction. <i>Nature Communications</i> , 2018 , 9, 2936	17.4	26
190	Vinylation of a Secondary Amine Core with Calcium Carbide for Efficient Post-Modification and Access to Polymeric Materials. <i>Molecules</i> , 2018 , 23,	4.8	13
189	Revealing the unusual role of bases in activation/deactivation of catalytic systems: O-NHC coupling in M/NHC catalysis. <i>Chemical Science</i> , 2018 , 9, 5564-5577	9.4	44
188	Chemical Transformations of Biomass-Derived C6-Furanic Platform Chemicals for Sustainable Energy Research, Materials Science, and Synthetic Building Blocks. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 8064-8092	8.3	149
187	Improvement of quality of 3D printed objects by elimination of microscopic structural defects in fused deposition modeling. <i>PLoS ONE</i> , 2018 , 13, e0198370	3.7	87
186	Systematic Study of the Behavior of Different Metal and Metal-Containing Particles under the Microwave Irradiation and Transformation of Nanoscale and Microscale Morphology. <i>Nanomaterials</i> , 2018 , 9,	5.4	5
185	Influence of RNHC Coupling on the Outcome of RX Oxidative Addition to Pd/NHC Complexes (R = Me, Ph, Vinyl, Ethynyl). <i>Organometallics</i> , 2018 , 37, 787-796	3.8	28
184	Ionic Liquids As Tunable Toxicity Storage Media for Sustainable Chemical Waste Management. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 719-726	8.3	24
183	High-Performance Synthesis of Phosphorus-Doped Graphene Materials and Stabilization of Phosphoric Micro- and Nanodroplets. <i>Langmuir</i> , 2018 , 34, 15739-15748	4	8
182	Acetylene in Organic Synthesis: Recent Progress and New Uses. <i>Molecules</i> , 2018 , 23,	4.8	63
181	Fundamental importance of ionic interactions in the liquid phase: A review of recent studies of ionic liquids in biomedical and pharmaceutical applications. <i>Journal of Molecular Liquids</i> , 2018 , 272, 271	-300	105
180	SYNTHESIS OF SELECTED TRANSITION METAL AND MAIN GROUP COMPOUNDS WITH SYNTHETIC APPLICATIONS. <i>Inorganic Syntheses</i> , 2018 , 155-204		1
179	Sustainable Utilization of Biomass Refinery Wastes for Accessing Activated Carbons and Supercapacitor Electrode Materials. <i>ChemSusChem</i> , 2018 , 11, 3599-3608	8.3	55
178	Ten-fold boost of catalytic performance in thiolyne click reaction enabled by a palladium diketonate complex with a hexafluoroacetylacetonate ligand. <i>Catalysis Science and Technology</i> , 2018 , 8, 3073-3080	5.5	5
177	Organoelement chemistry: promising growth areas and challenges. <i>Russian Chemical Reviews</i> , 2018 , 87, 393-507	6.8	111

(2016-2017)

176	Understanding active species in catalytic transformations: From molecular catalysis to nanoparticles, leaching, C ocktails of catalysts and dynamic systems. <i>Coordination Chemistry Reviews</i> , 2017 , 346, 2-19	23.2	223
175	Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. <i>Chemical Reviews</i> , 2017 , 117, 7132-7189	68.1	847
174	Substrate-Selective C-H Functionalization for the Preparation of Organosulfur Compounds from Crude Oil-Derived Components. <i>ACS Omega</i> , 2017 , 2, 1419-1423	3.9	2
173	A solid acetylene reagent with enhanced reactivity: fluoride-mediated functionalization of alcohols and phenols. <i>Green Chemistry</i> , 2017 , 19, 3032-3041	10	50
172	A New Mode of Operation of Pd-NHC Systems Studied in a Catalytic MizorokiHeck Reaction. <i>Organometallics</i> , 2017 , 36, 1981-1992	3.8	97
171	Organic and hybrid systems: from science to practice. <i>Mendeleev Communications</i> , 2017 , 27, 425-438	1.9	79
170	Dynamic Behavior of Metal Nanoparticles in Pd/C and Pt/C Catalytic Systems under Microwave and Conventional Heating. <i>ACS Applied Materials & Description of Metal Nature Materials & Materials & Metal Nature Metal Nature Nature</i>	9.5	11
169	Three-Dimensional Printing with Biomass-Derived PEF for Carbon-Neutral Manufacturing. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 15931-15935	16.4	76
168	Three-Dimensional Printing with Biomass-Derived PEF for Carbon-Neutral Manufacturing. <i>Angewandte Chemie</i> , 2017 , 129, 16147-16151	3.6	18
167	Efficient route for the construction of polycyclic systems from bioderived HMF. <i>Green Chemistry</i> , 2017 , 19, 4858-4864	10	41
166	Alkynylation of Bio-Based 5-Hydroxymethylfurfural to Connect Biomass Processing with Conjugated Polymers and Furanic Pharmaceuticals. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 2652-2655	4.5	17
165	Investigation of Cytotoxic Activity of Mitoxantrone at the Individual Cell Level by Using Ionic-Liquid-Tag-Enhanced Mass Spectrometry. <i>Analytical Chemistry</i> , 2017 , 89, 13374-13381	7.8	16
164	Toxicity of Metal Compounds: Knowledge and Myths. <i>Organometallics</i> , 2017 , 36, 4071-4090	3.8	283
163	REktitelbild: Three-Dimensional Printing with Biomass-Derived PEF for Carbon-Neutral Manufacturing (Angew. Chem. 50/2017). <i>Angewandte Chemie</i> , 2017 , 129, 16308-16308	3.6	
162	Facile Chemical Access to Biologically Active Norcantharidin Derivatives from Biomass. <i>Molecules</i> , 2017 , 22,	4.8	16
161	Conversion of plant biomass to furan derivatives and sustainable access to the new generation of polymers, functional materials and fuels. <i>Russian Chemical Reviews</i> , 2017 , 86, 357-387	6.8	59
160	An efficient metal-free pathway to vinyl thioesters with calcium carbide as the acetylene source. <i>Green Chemistry</i> , 2016 , 18, 482-486	10	54
159	Welche Katalysatormetalle sind harmlos, welche giftig? Vergleich der ToxizitEen von Ni-, Cu-, Fe-, Pd-, Pt-, Rh- und Au-Salzen. <i>Angewandte Chemie</i> , 2016 , 128, 12334-12347	3.6	52

158	Which Metals are Green for Catalysis? Comparison of the Toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au Salts. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12150-62	16.4	260
157	Alkynes as a versatile platform for construction of chemical molecular complexity and realization of molecular 3D printing. <i>Russian Chemical Reviews</i> , 2016 , 85, 226-247	6.8	30
156	Technological aspects of fructose conversion to high-purity 5-hydroxymethylfurfural, a versatile platform chemical. <i>Russian Journal of Organic Chemistry</i> , 2016 , 52, 767-771	0.7	23
155	Selective Synthesis of 2,5-Diformylfuran by Sustainable 4-acetamido-TEMPO/Halogen-Mediated Electrooxidation of 5-Hydroxymethylfurfural. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 2578-85	4.5	19
154	Shielding the chemical reactivity using graphene layers for controlling the surface properties of carbon materials. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 4608-16	3.6	11
153	Do nanoparticles have a survival instinct?. <i>Mendeleev Communications</i> , 2016 , 26, 1-2	1.9	3
152	Visible light mediated metal-free thiol-yne click reaction. <i>Chemical Science</i> , 2016 , 7, 6740-6745	9.4	86
151	Critical Influence of 5-Hydroxymethylfurfural Aging and Decomposition on the Utility of Biomass Conversion in Organic Synthesis. <i>Angewandte Chemie</i> , 2016 , 128, 8478-8482	3.6	33
150	Calcium Carbide: A Unique Reagent for Organic Synthesis and Nanotechnology. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 965-76	4.5	87
149	Direct Observation of Self-Organized Water-Containing Structures in the Liquid Phase and Their Influence on 5-(Hydroxymethyl)furfural Formation in Ionic Liquids. <i>Angewandte Chemie</i> , 2016 , 128, 220	1 ⁻³ 2 ⁶ 206	7
148	Critical Influence of 5-Hydroxymethylfurfural Aging and Decomposition on the Utility of Biomass Conversion in Organic Synthesis. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8338-42	16.4	116
147	Direct Observation of Self-Organized Water-Containing Structures in the Liquid Phase and Their Influence on 5-(Hydroxymethyl)furfural Formation in Ionic Liquids. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2161-6	16.4	72
146	Modern electron microscopy in the study of chemical systems at the boundary of organic synthesis and catalysis. <i>Russian Chemical Reviews</i> , 2016 , 85, 1198-1214	6.8	19
145	Analysis of 3D printing possibilities for the development of practical applications in synthetic organic chemistry. <i>Russian Chemical Bulletin</i> , 2016 , 65, 1637-1643	1.7	29
144	Plausible role of nanoparticle contamination in the synthesis and properties of organic electronic materials. <i>Organic Photonics and Photovoltaics</i> , 2016 , 4,	5	2
143	Nature of the Copper-Oxide-Mediated CB Cross-Coupling Reaction: Leaching of Catalytically Active Species from the Metal Oxide Surface. <i>ACS Catalysis</i> , 2016 , 6, 3637-3643	13.1	35
142	Challenges in the development of organic and hybrid molecular systems. <i>Mendeleev Communications</i> , 2016 , 26, 365-374	1.9	86
141	Synthesis of HIV-1 capsid protein assembly inhibitor (CAP-1) and its analogues based on a biomass approach. <i>Organic and Biomolecular Chemistry</i> , 2016 , 14, 10593-10598	3.9	20

	140	Carboxylic Group-Assisted Proton Transfer in Gold-Mediated Thiolation of Alkynes. <i>Organometallics</i> , 2015 , 34, 5214-5224	3.8	14
	139	Spatial imaging of carbon reactivity centers in Pd/C catalytic systems. <i>Chemical Science</i> , 2015 , 6, 3302-33	39.34	43
	138	The reasons organic chemistry is needed for in a well developed country. <i>Russian Journal of Organic Chemistry</i> , 2015 , 51, 145-147	0.7	21
	137	Organic and hybrid molecular systems. <i>Mendeleev Communications</i> , 2015 , 25, 75-82	1.9	163
,	136	Cytotoxic Activity of Salicylic Acid-Containing Drug Models with Ionic and Covalent Binding. <i>ACS Medicinal Chemistry Letters</i> , 2015 , 6, 1099-104	4.3	53
	135	Pd-NHC Catalytic System for the Efficient Atom-Economic Synthesis of Vinyl Sulfides from Tertiary, Secondary, or Primary Thiols. <i>ACS Catalysis</i> , 2015 , 5, 7208-7213	13.1	44
	134	Molecular Extraction of Peptides in Ionic Liquid Systems. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 357-364	8.3	27
	133	An unexpected increase of toxicity of amino acid-containing ionic liquids. <i>Toxicology Research</i> , 2015 , 4, 152-159	2.6	60
	132	A catalytic system for the selective conversion of cellulose to 5-hydroxymethylfurfural under mild conditions. <i>Russian Chemical Bulletin</i> , 2015 , 64, 2954-2957	1.7	6
	131	Computational study of a model system of enzyme-mediated [4+2] cycloaddition reaction. <i>PLoS ONE</i> , 2015 , 10, e0119984	3.7	18
	130	Analysis of model Pd- and Pt-containing contaminants in aqueous media using ESI-MS and the fragment partitioning approach. <i>RSC Advances</i> , 2015 , 5, 107333-107339	3.7	7
	129	Facile Hydrolysis of Nickel(II) Complexes with N-Heterocyclic Carbene Ligands. <i>Organometallics</i> , 2015 , 34, 5759-5766	3.8	38
	128	How sensitive and accurate are routine NMR and MS measurements?. <i>Mendeleev Communications</i> , 2015 , 25, 454-456	1.9	84
	127	The Bne-potsynthesis of 2,5-diformylfuran, a promising synthon for organic materials in the conversion of biomass. <i>Russian Chemical Bulletin</i> , 2015 , 64, 1069-1073	1.7	13
	126	Calcium carbide as a convenient acetylene source in the synthesis of unsaturated sulfides, promising functionalized monomers. <i>Mendeleev Communications</i> , 2015 , 25, 415-416	1.9	19
	125	Nickel: The Spirited Horselof Transition Metal Catalysis. <i>ACS Catalysis</i> , 2015 , 5, 1964-1971	13.1	452
	124	Nanoscale organization of ionic liquids and their interaction with peptides probed by 13C NMR spectroscopy. <i>Tetrahedron</i> , 2014 , 70, 6075-6081	2.4	23
	123	Expanded-ring N-heterocyclic carbenes efficiently stabilize gold(I) cations, leading to high activity in Eacid-catalyzed cyclizations. <i>Chemistry - A European Journal</i> , 2014 , 20, 6162-70	4.8	53

122	Miniaturization of NMR systems: desktop spectrometers, microcoil spectroscopy, and "NMR on a chip" for chemistry, biochemistry, and industry. <i>Chemical Reviews</i> , 2014 , 114, 5641-94	68.1	159
121	Exceptional Behavior of Ni2O2 Species Revealed by ESI-MS and MS/MS Studies in Solution. Application of Superatomic Core To Facilitate New Chemical Transformations. <i>Organometallics</i> , 2014 , 33, 6352-6357	3.8	8
120	Exclusive selectivity in the one-pot formation of C-C and C-Se bonds involving Ni-catalyzed alkyne hydroselenation: optimization of the synthetic procedure and a mechanistic study. <i>Journal of Organic Chemistry</i> , 2014 , 79, 12111-21	4.2	18
119	Catalytically Enhanced NMR of Heterogeneously Catalyzed Hydrogenations 2014 , 145-186		4
118	Design of a Bimetallic Au/Ag System for Dechlorination of Organochlorides: Experimental and Theoretical Evidence for the Role of the Cluster Effect. <i>Organometallics</i> , 2014 , 33, 6003-6012	3.8	5
117	Carboxylate switch between hydro- and carbopalladation pathways in regiodivergent dimerization of alkynes. <i>Chemistry - A European Journal</i> , 2014 , 20, 9578-88	4.8	31
116	Computational Modeling of Graphene Systems Containing Transition Metal Atoms and Clusters 2014 , 321-374		1
115	Noninnocent Nature of Carbon Support in Metal/Carbon Catalysts: Etching/Pitting vs Nanotube Growth under Microwave Irradiation. <i>ACS Catalysis</i> , 2014 , 4, 3806-3814	13.1	43
114	Mechanisms of Metal-Mediated CN Coupling Processes: A Synergistic Relationship between Gas-Phase Experiments and Computational Chemistry 2014 , 1-16		3
113	Fundamental Aspects of the Metal-Catalyzed CH Bond Functionalization by Diazocarbenes: Guiding Principles for Design of Catalyst with Non-redox-Active Metal (Such as Ca) and Non-Innocent Ligand 2014 , 17-40		1
112	Computational Studies on Sigmatropic Rearrangements via EActivation by Palladium and Gold Catalysts 2014 , 93-120		
111	Theoretical Insights into Transition Metal-Catalyzed Reactions of Carbon Dioxide 2014 , 121-144		
110	Combined Use of Both Experimental and Theoretical Methods in the Exploration of Reaction Mechanisms in Catalysis by Transition Metals 2014 , 187-216		1
109	Is There Something New Under the Sun?Myths and Facts in the Analysis of Catalytic Cycles 2014 , 217-24	18	5
108	Computational Tools for Structure, Spectroscopy and Thermochemistry 2014 , 249-320		
107	Unprecedented Control of Selectivity in Nickel-Catalyzed Hydrophosphorylation of Alkynes: Efficient Route to Mono- and Bisphosphonates. <i>Advanced Synthesis and Catalysis</i> , 2014 , 356, 771-780	5.6	38
106	Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization. <i>ChemSusChem</i> , 2014 , 7, 336-60	8.3	312
105	Using Metal Vinylidene Complexes to Probe the Partnership Between Theory and Experiment 2014 , 41-	·68	

104	"Pure" method for depositing platinum nanoparticles onto the carbon material from a Pt2dba3 solution. <i>Russian Chemical Bulletin</i> , 2014 , 63, 2560-2563	1.7	4
103	Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision. <i>Russian Chemical Reviews</i> , 2014 , 83, 885-985	6.8	153
102	Modulation of chemical interactions across graphene layers and metastable domains in carbon materials. <i>Mendeleev Communications</i> , 2014 , 24, 327-328	1.9	8
101	Ligand, Additive, and Solvent Effects in Palladium Catalysis IMechanistic Studies En Route to Catalyst Design 2014 , 69-92		
100	Nano-Structured Metal Chalcogenides as Reagents for the Catalytic CarbonBulfur Bond Formation in Cross-Coupling Reaction. <i>Topics in Catalysis</i> , 2013 , 56, 1246-1252	2.3	6
99	Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations. <i>Chemical Society Reviews</i> , 2013 , 42, 8376-415	58.5	93
98	Synthesis of alkyl tetraphosphonates: First example of nickel catalyst for H-phosphonates addition to diynes. <i>Russian Journal of Organic Chemistry</i> , 2013 , 49, 1099-1107	0.7	5
97	Fast and accurate computational modeling of adsorption on graphene: a dispersion interaction challenge. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 18815-21	3.6	56
96	Catalytic C-C and C-heteroatom bond formation reactions: in situ generated or preformed catalysts? Complicated mechanistic picture behind well-known experimental procedures. <i>Journal of Organic Chemistry</i> , 2013 , 78, 11117-25	4.2	114
95	Self-assembled selenium monolayers: from nanotechnology to materials science and adaptive catalysis. <i>Chemistry - A European Journal</i> , 2013 , 19, 17640-60	4.8	60
94	Dependence of catalytic activity of metal-containing particles on degree of ordering rather than on size and shape. Pd and Ni-catalyzed carbonfleteroatom bond formation. <i>Mendeleev Communications</i> , 2013 , 23, 337-339	1.9	0
93	Stereoselective addition of aliphatic thiols to internal alkynes in a catalytic system with palladium Banosaltas an active site. <i>Russian Chemical Bulletin</i> , 2013 , 62, 47-54	1.7	3
92	Conversion of carbohydrates to 5-hydroxymethylfurfural: the nature of the observed selectivity decrease and microwave radiation effect. <i>Russian Chemical Bulletin</i> , 2013 , 62, 830-835	1.7	9
91	Target-oriented analysis of gaseous, liquid and solid chemical systems by mass spectrometry, nuclear magnetic resonance spectroscopy and electron microscopy. <i>Russian Chemical Reviews</i> , 2013 , 82, 648-685	6.8	169
90	Efficient Sustainable Tool for Monitoring Chemical Reactions and Structure Determination in Ionic Liquids by ESI-MS. <i>ChemistryOpen</i> , 2013 , 2, 208-14	2.3	6
89	Efficient general procedure to access a diversity of gold(0) particles and gold(1) phosphine complexes from a simple HAuCl4 source. Localization of homogeneous/heterogeneous system's interface and field-emission scanning electron microscopy study. <i>Journal of the American Chemical</i>	16.4	29
88	PEG as an alternative reaction medium in metal-mediated transformations. <i>Coordination Chemistry Reviews</i> , 2012 , 256, 2893-2920	23.2	86
87	Alkyne and Alkene Insertion into Metal Heteroatom and Metal Hydrogen Bonds: The Key Stages of Hydrofunctionalization Process. <i>Topics in Organometallic Chemistry</i> , 2012 , 1-19	0.6	13

86	Linear encoding of functional groups in the synthesis of heterocyclic compounds: cycloaddition of enyne and alkyne units. <i>Chemistry of Heterocyclic Compounds</i> , 2012 , 48, 2-6	1.4	O
85	General and selective head-to-head dimerization of terminal alkynes proceeding via hydropalladation pathway. <i>Organic Letters</i> , 2012 , 14, 2846-9	6.2	60
84	Pd2(dba)3 as a Precursor of Soluble Metal Complexes and Nanoparticles: Determination of Palladium Active Species for Catalysis and Synthesis. <i>Organometallics</i> , 2012 , 31, 2302-2309	3.8	202
83	Unusual Control of Reaction Selectivity through a Subtle Change in the Ligand: Proof of Concept and Application in Pd-Catalyzed CP Bond Formation. <i>European Journal of Organic Chemistry</i> , 2012 , 2012, 3830-3840	3.2	22
82	Toward the Ideal Catalyst: From Atomic Centers to a Cocktail of Catalysts. <i>Organometallics</i> , 2012 , 31, 1595-1604	3.8	209
81	The first molecular level monitoring of carbohydrate conversion to 5-hydroxymethylfurfural in ionic liquids. B2O3an efficient dual-function metal-free promoter for environmentally benign applications. ChemSusChem, 2012, 5, 783-9	8.3	59
80	Catalytic adaptive recognition of thiol (SH) and selenol (SeH) groups toward synthesis of functionalized vinyl monomers. <i>Journal of the American Chemical Society</i> , 2012 , 134, 6637-49	16.4	84
79	NMR analysis of chiral alcohols and amines: development of an environmentally benign in tube procedure with high efficiency and improved detection limit. <i>Green Chemistry</i> , 2011 , 13, 1735	10	18
78	Can We Predict the Future of Organometallic Chemistry? (Organometallics, 2011, 30, 5-6	3.8	7
77	Preparation of metal "nanosalts" and their application in catalysis: heterogeneous and homogeneous pathways. <i>Dalton Transactions</i> , 2011 , 40, 4011-23	4.3	35
76	Characterization of molecular systems and monitoring of chemical reactions in ionic liquids by nuclear magnetic resonance spectroscopy. <i>Chemical Reviews</i> , 2011 , 111, 418-54	68.1	67
75	A SEM study of nanosized metal films and metal nanoparticles obtained by magnetron sputtering. <i>Russian Chemical Bulletin</i> , 2011 , 60, 2602-2607	1.7	116
74	Transition-metal-catalyzed C-S, C-Se, and C-Te bond formation via cross-coupling and atom-economic addition reactions. <i>Chemical Reviews</i> , 2011 , 111, 1596-636	68.1	1226
73	Novel [4 + 2] cycloaddition reactions of alkyne and enyne key-units: Direct access to bicyclic aromatic and heteroaromatic products. A theoretical mechanistic study. <i>Chemical Science</i> , 2011 , 2, 2332	2-2 3 41	13
72	Catalytic (Ni, Pd, Pt, Rh and Au) and Non-Catalytic Reactions for Atom- Economic Carbon-Sulfur, Carbon-Selenium and Carbon-Tellurium Bonds Formation. <i>Current Organic Synthesis</i> , 2011 , 8, 2-52	1.9	35
71	1,4-Diiodo-1,3-dienes: versatile reagents in organic synthesis. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 306-	2 33.5	23
70	Alkyne insertion into the M-P and M-H bonds (M=Pd, Ni, Pt, and Rh): a theoretical mechanistic study of the C-P and C-H bond-formation steps. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 1423-30	4.5	39
69	Synthesis of Phosphorus Compounds via Metal-Catalyzed Addition of P⊞ Bond to Unsaturated Organic Molecules. <i>Catalysis By Metal Complexes</i> , 2011 , 213-264		14

68	Modeling of NMR spectra and signal assignment using real-time DFT/GIAO calculations. <i>Russian Chemical Bulletin</i> , 2011 , 60, 783-789	1.7	15
67	Stereochemical study of the sterically crowded phenylselanylalkenes by means of (77)Se-(1)H spin-spin coupling constants. <i>Magnetic Resonance in Chemistry</i> , 2011 , 49, 570-4	2.1	10
66	Catalytic hydrofunctionalization of alkynes through P-H bond addition: the unique role of orientation and properties of the phosphorus group in the insertion step. <i>Chemistry - A European Journal</i> , 2011 , 17, 12623-30	4.8	28
65	NMR approach for the identification of dinuclear and mononuclear complexes: The first detection of [Pd(SPh)2(PPh3)2] and [Pd2(SPh)4(PPh3)2] The intermediate complexes in the catalytic carbonBulfur bond formation reaction. <i>Journal of Organometallic Chemistry</i> , 2011 , 696, 400-405	2.3	22
64	Highly Selective Catalytic Synthesis of (E,E)-1,4-Diiodobuta-1,3-diene via Atom-Efficient Addition of Acetylene and Iodine: A Versatile (E,E)-1,3-Diene Building Block in Cross-Coupling Reactions. <i>Synlett</i> , 2011 , 2011, 2021-2024	2.2	14
63	First principles design of derivatizing agent for direct determination of enantiomeric purity of chiral alcohols and amines by NMR spectroscopy. <i>Chemical Communications</i> , 2010 , 46, 3212-4	5.8	32
62	Ni(acac)2/Phosphine as an Excellent Precursor of Nickel(0) for Catalytic Systems[] <i>Organometallics</i> , 2010 , 29, 5098-5102	3.8	45
61	The comparison of addition of molecules possessing P(V)-H bond to alkynes catalyzed with Pd and Ni complexes. <i>Russian Journal of Organic Chemistry</i> , 2010 , 46, 1269-1276	0.7	23
60	Using nanosized, homogeneous, and heterogeneous catalytic systems in organic synthesis: changing the structure of active center in chemical reactions in solution. <i>Nanotechnologies in Russia</i> , 2010 , 5, 1-17	0.6	10
59	Acid-Free Nickel Catalyst for Stereo- and Regioselective Hydrophosphorylation of Alkynes: Synthetic Procedure and Combined Experimental and Theoretical Mechanistic Study. <i>Advanced Synthesis and Catalysis</i> , 2010 , 352, 2979-2992	5.6	62
58	The Formation of Csp2?S and Csp2?Se Bonds by Substitution and Addition Reactions Catalyzed by Transition Metal Complexes 2010 , 69-118		1
57	Synthesis of Nine-, Ten-, and Fifteen-Membered Alkenolides by the Oxidative Cleavage of the Bridging C=C Bond in 2-Oxabicycloalkenes <i>ChemInform</i> , 2010 , 33, 155-155		
56	Two distinct mechanisms of alkyne insertion into the metal-sulfur bond: combined experimental and theoretical study and application in catalysis. <i>Chemistry - A European Journal</i> , 2010 , 16, 2063-71	4.8	59
55	Mechanistic insight into organic and catalytic reactions by joint studies using mass spectrometry and NMR spectroscopy. <i>Mendeleev Communications</i> , 2010 , 20, 125-131	1.9	156
54	Real size of ligands, reactants and catalysts: Studies of structure, reactivity and selectivity by ONIOM and other hybrid computational approaches?. <i>Journal of Molecular Catalysis A</i> , 2010 , 324, 104-	119	41
53	Celebrating 20 Years of SYNLETT - Special Essay: General Procedure for the Palladium-Catalyzed Selective Hydrophosphorylation of Alkynes. <i>Synlett</i> , 2009 , 2009, 2375-2381	2.2	56
52	Catalyst Leaching as an Efficient Tool for Constructing New Catalytic Reactions: Application to the Synthesis of Cyclic Vinyl Sulfides and Vinyl Selenides. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 1149-1161	2.3	31
51	Sulfur-containing alkenes new class of chelating ligands: Synthesis, coordination to palladium, and structure of the resulting complexes. <i>Russian Journal of Organic Chemistry</i> , 2009 , 45, 1743-1754	0.7	4

50	Stereodefined Synthesis of a New Type of 1,3-Dienes by Ligand-Controlled Carbon Carbon Carbon Bond Formation in Nickel-Catalyzed Reaction of Diaryldichalcogenides with Alkynes. <i>Organometallics</i> , 2008 , 27, 4056-4061	3.8	52
49	Formation of polynuclear palladium complexes with the benzimidazole-2-thiolate anion. <i>Russian Chemical Bulletin</i> , 2008 , 57, 47-55	1.7	3
48	Molten state and solvent-free systems studied by NMR spectroscopy: addition reactions catalyzed by transition metal complexes. <i>Russian Chemical Bulletin</i> , 2008 , 57, 754-760	1.7	4
47	Remarkable ligand effect in Ni- and Pd-catalyzed bisthiolation and bisselenation of terminal alkynes: solving the problem of stereoselective dialkyldichalcogenide addition to the C triple chemical bond C Bond. <i>Chemistry - A European Journal</i> , 2008 , 14, 2420-34	4.8	66
46	Critical Effect of Phosphane Ligands on the Mechanism of Carbon arbon Bond Formation Involving Palladium(II) Complexes: A Theoretical Investigation of Reductive Elimination from Square-Planar and T-Shaped Species. European Journal of Inorganic Chemistry, 2007, 2007, 5390-5399	2.3	90
45	Unusual Influence of the Structures of Transition Metal Complexes on Catalytic CB and CBe Bond Formation Under Homogeneous and Heterogeneous Conditions. <i>European Journal of Organic Chemistry</i> , 2007 , 2007, 3431-3444	3.2	177
44	Quantum-chemical investigation of the mechanism of reaction between 1,2-dialkyldiaziridines and heterocumulenes. <i>Russian Journal of Organic Chemistry</i> , 2007 , 43, 1101-1105	0.7	6
43	Addition reactions of E-E and E-H bonds to triple bond of alkynes catalyzed by Pd, Pt, and Ni complexes (E=S, Se). <i>Pure and Applied Chemistry</i> , 2007 , 79, 1041-1056	2.1	69
42	Highly Efficient Nickel-Based Heterogeneous Catalytic System with Nanosized Structural Organization for Selective Se⊞ Bond Addition to Terminal and Internal Alkynes. <i>Organometallics</i> , 2007 , 26, 740-750	3.8	63
41	New approach for size- and shape-controlled preparation of Pd nanoparticles with organic ligands. Synthesis and application in catalysis. <i>Journal of the American Chemical Society</i> , 2007 , 129, 7252-3	16.4	123
40	Homogeneous Nickel Catalysts for the Selective Transfer of a Single Arylthio Group in the Catalytic Hydrothiolation of Alkynes. <i>Organometallics</i> , 2006 , 25, 4462-4470	3.8	149
39	Efficient and Convenient Synthesis of Winyl Sulfides in Nickel-Catalyzed Regioselective Addition of Thiols to Terminal Alkynes under Solvent-Free Conditions. <i>Organometallics</i> , 2006 , 25, 1970-1977	3.8	101
38	New method for the synthesis and the mechanism of formation of 1,2-di-and 1,2,3-trialkyldiaziridines. <i>Russian Chemical Bulletin</i> , 2006 , 55, 2056-2060	1.7	4
37	Nickel-catalyzed addition of benzenethiol to alkynes: Formation of carbon-sulfur and carbon-carbon bonds. <i>Russian Chemical Bulletin</i> , 2006 , 55, 2109-2113	1.7	24
36	Theoretical Insight into the CII Coupling Reactions of the Vinyl, Phenyl, Ethynyl, and Methyl Complexes of Palladium and Platinum. <i>Organometallics</i> , 2005 , 24, 715-723	3.8	146
35	Can Steric Effects Induce the Mechanism Switch in the Rhodium-Catalyzed Imine Boration Reaction? A Density Functional and ONIOM Study. <i>Organometallics</i> , 2005 , 24, 1938-1946	3.8	30
34	New Catalytic System for SB and SeBe Bond Addition to Alkynes Based on Phosphite Ligands. <i>Organometallics</i> , 2005 , 24, 1275-1283	3.8	79
33	Synthesis and structural characterization of carbon-centered tris(pentafluorophenyl)silyl derivatives. <i>Journal of Organometallic Chemistry</i> , 2005 , 690, 3680-3689	2.3	10

(2002-2005)

32	Nickel(II) Chloride-Catalyzed Regioselective Hydrothiolation of Alkynes. <i>Advanced Synthesis and Catalysis</i> , 2005 , 347, 1993-2001	5.6	87
31	Solvent-Free Palladium-Catalyzed Addition of Diaryl Dichalcogenides to Alkynes <i>ChemInform</i> , 2005 , 36, no		1
30	Palladium-catalyzed activation of E-E and C-E bonds in diaryl dichalcogenides (E = S, Se) under microwave irradiation conditions. <i>Russian Chemical Bulletin</i> , 2005 , 54, 576-587	1.7	31
29	The First Example of Polymer-Supported Palladium Catalyst for Stereoßelective S-S Bond Addition to Terminal Alkynes. <i>Synlett</i> , 2005 , 2005, 1015-1017	2.2	45
28	Solvent-free palladium-catalyzed addition of diaryl dichalcogenides to alkynes. <i>Russian Chemical Bulletin</i> , 2004 , 53, 561-565	1.7	17
27	1,2-Bis(methylamino)ethane-1,2-diol dihydrochloride as a new precursor of 1,2,1",2"-tetramethyl-3,3"-bidiaziridine. <i>Russian Chemical Bulletin</i> , 2004 , 53, 641-646	1.7	2
26	Evaluation of 13C NMR spectra of cyclopropenyl and cyclopropyl acetylenes by theoretical calculations. <i>Open Chemistry</i> , 2004 , 2, 196-213	1.6	6
25	Palladium-catalyzed addition of disulfides and diselenides to alkynes under solvent free conditions. <i>Organic and Biomolecular Chemistry</i> , 2004 , 2, 284-7	3.9	54
24	Mechanistic Investigation and New Catalyst Design in Palladium- and Platinum-Catalyzed Seße Bond Addition to Alkynes. <i>Organometallics</i> , 2003 , 22, 1414-1421	3.8	91
23	Mechanistic Study of Addition of Diphenyldichalcogenides to the Acetylenic Triple Bond. <i>Doklady Chemistry</i> , 2003 , 389, 81-86	0.8	8
22	Mechanistic Study and Catalyst Design for PhSSPh Addition Reaction to Alkyne Triple Bond. <i>Doklady Chemistry</i> , 2003 , 390, 112-114	0.8	6
21	New approach to stereochemical structure determination of bis-selenium-subsituted alkenes. <i>Russian Chemical Bulletin</i> , 2003 , 52, 811-816	1.7	10
20	Palladium and platinum catalyzed hydroselenation of alkynes: Se?H vs Se?Se addition to C?C bond. Journal of Organometallic Chemistry, 2003 , 679, 162-172	2.3	56
19	Mechanistic study of palladium catalyzed SB and SeBe bonds addition to alkynes. <i>Journal of Organometallic Chemistry</i> , 2003 , 687, 451-461	2.3	66
18	Competing nature of intramolecular [4 + 2] and [3 + 2] cycloaddition reactions: a theoretical study. Journal of Physical Organic Chemistry, 2003 , 16, 253-263	2.1	9
17	Stereo- and Regioselective Functionalization of Alkynes Catalyzed by Platinum(IV) and Palladium(II) Complexes in the System II3H2O/MeOH. <i>Russian Journal of Organic Chemistry</i> , 2002 , 38, 636-650	0.7	11
16	Mechanism of Catalytic Addition of Benzeneselenol to Alkynes. <i>Russian Journal of Organic Chemistry</i> , 2002 , 38, 1475-1478	0.7	11
15	Vinyl-vinyl coupling on late transition metals through C-C reductive elimination mechanism. A computational study. <i>Journal of the American Chemical Society</i> , 2002 , 124, 2839-52	16.4	95

14	Stable Pt(IV) vinylic complexes with unusual regioselectivity formed in the reaction of methylpropiolate triple bond activation. <i>Journal of Organometallic Chemistry</i> , 2001 , 636, 175-181	2.3	16
13	Ab initio study of the mechanisms of intermolecular and intramolecular [4 + 2] cycloaddition reactions of conjugated enynes. <i>Journal of Physical Organic Chemistry</i> , 2001 , 14, 109-121	2.1	20
12	Synthesis of nine-, ten-, and fifteen-membered alkenolides by the oxidative cleavage of the bridging C=C bond in 2-oxabicycloalkenes. <i>Russian Chemical Bulletin</i> , 2001 , 50, 2149-2155	1.7	10
11	Catalytic Triple Bond Activation and Vinyllinyl Reductive Coupling by Pt(IV) Complexes. A Density Functional Study. <i>Organometallics</i> , 2001 , 20, 1652-1667	3.8	23
10	The mechanism of C?C bond formation on the Pt(IV) center involving chelate metallocycle ligands. Journal of Organometallic Chemistry, 2000 , 604, 290-295	2.3	13
9	Synthesis and structure of [Pt(CH?CI?CH2OCH3)2(I)2] as possible intermediate of catalytic alkynes conversion reaction into diiodosubstituted dienes. <i>Inorganic Chemistry Communication</i> , 1998 , 1, 411-41	4 ^{3.1}	15
8	Iodoplatination of a triple bond by platinum(IV) complexes: Formation of a Evinyl derivative. <i>Russian Chemical Bulletin</i> , 1996 , 45, 480-481	1.7	1
7	Transition Metal Catalyzed Carbon?Carbon Bond Formation: The Key of Homogeneous Catalysis131-14	18	3
7	Transition Metal Catalyzed Carbon?Carbon Bond Formation: The Key of Homogeneous Catalysis131-14 Stabilization of the PdNHC framework with 1,2,4-triazol-5-ylidene ligands toward decomposition in alkaline media. <i>Inorganic Chemistry Frontiers</i> ,	6.8	3
	Stabilization of the PdNHC framework with 1,2,4-triazol-5-ylidene ligands toward decomposition		
6	Stabilization of the PdNHC framework with 1,2,4-triazol-5-ylidene ligands toward decomposition in alkaline media. <i>Inorganic Chemistry Frontiers</i> , Evidence for Bocktail-type catalysis in Buchwald-Hartwig reaction. A mechanistic study. <i>Catalysis</i>	6.8	4
6	Stabilization of the PdNHC framework with 1,2,4-triazol-5-ylidene ligands toward decomposition in alkaline media. <i>Inorganic Chemistry Frontiers</i> , Evidence for BocktailEtype catalysis in BuchwaldHartwig reaction. A mechanistic study. <i>Catalysis Science and Technology</i> ,	6.8 5.5	4
654	Stabilization of the PdNHC framework with 1,2,4-triazol-5-ylidene ligands toward decomposition in alkaline media. <i>Inorganic Chemistry Frontiers</i> , Evidence for BocktailEtype catalysis in BuchwaldHartwig reaction. A mechanistic study. <i>Catalysis Science and Technology</i> , Acetylene and ethylene Luniversal C2 molecular units in cycloaddition reactions. <i>Synthesis</i> , Cycloaddition Reactions of In Situ Generated C2D2 in Dioxane: Efficient Synthetic Approach to	6.8 5.5 2.9	4 4