Maria Luz Martinez Chantar

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5481031/maria-luz-martinez-chantar-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 160
 7,018
 46
 78

 papers
 citations
 h-index
 g-index

 188
 8,469
 7.6
 5.24

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
160	Genetic and pharmacological inhibition of XBP1 protects against APAP hepatotoxicity through the activation of autophagy <i>Cell Death and Disease</i> , 2022 , 13, 143	9.8	1
159	PI3K-regulated Glycine N-methyltransferase is required for the development of prostate cancer Oncogenesis, 2022 , 11, 10	6.6	
158	Methionine adenosyltransferase 1a antisense oligonucleotides activate the liver-brown adipose tissue axis preventing obesity and associated hepatosteatosis <i>Nature Communications</i> , 2022 , 13, 1096	17.4	2
157	Methionine Cycle Rewiring by Targeting miR-873-5p Modulates Ammonia Metabolism to Protect the Liver from Acetaminophen. <i>Antioxidants</i> , 2022 , 11, 897	7.1	1
156	Hu Antigen R (HuR) Protein Structure, Function and Regulation in Hepatobiliary Tumors. <i>Cancers</i> , 2022 , 14, 2666	6.6	O
155	Dual Targeting of G9a and DNA Methyltransferase-1 for the Treatment of Experimental Cholangiocarcinoma. <i>Hepatology</i> , 2021 , 73, 2380-2396	11.2	3
154	E2F1 and E2F2-Mediated Repression of CPT2 Establishes a Lipid-Rich Tumor-Promoting Environment. <i>Cancer Research</i> , 2021 , 81, 2874-2887	10.1	10
153	Prognostic significance of hypoxic and metabolic gene profiling in hepatocellular carcinoma. <i>Liver Cancer International</i> , 2021 , 2, 15-26	0.8	1
152	Anti-miR-518d-5p overcomes liver tumor cell death resistance through mitochondrial activity. <i>Cell Death and Disease</i> , 2021 , 12, 555	9.8	2
151	Boosting mitochondria activity by silencing MCJ overcomes cholestasis-induced liver injury. <i>JHEP Reports</i> , 2021 , 3, 100276	10.3	О
150	Inhibition of NAE-dependent protein hyper-NEDDylation in cystic cholangiocytes halts cystogenesis in experimental models of polycystic liver disease. <i>United European Gastroenterology Journal</i> , 2021 , 9, 848	5.3	1
149	The L-fLysophosphatidylinositol/G Protein-Coupled Receptor 55 System Induces the Development of Nonalcoholic Steatosis and Steatohepatitis. <i>Hepatology</i> , 2021 , 73, 606-624	11.2	19
148	Obese patients with NASH have increased hepatic expression of SARS-CoV-2 critical entry points. Journal of Hepatology, 2021 , 74, 469-471	13.4	23
147	Targeting UBC9-mediated protein hyper-SUMOylation in cystic cholangiocytes halts polycystic liver disease in experimental models. <i>Journal of Hepatology</i> , 2021 , 74, 394-406	13.4	2
146	Borrelia burgdorferi infection induces long-term memory-like responses in macrophages with tissue-wide consequences in the heart. <i>PLoS Biology</i> , 2021 , 19, e3001062	9.7	О
145	Revisiting the Role of Natural Killer Cells in Non-Alcoholic Fatty Liver Disease. <i>Frontiers in Immunology</i> , 2021 , 12, 640869	8.4	9
144	Glutamine, fatty liver disease and aging. <i>Aging</i> , 2021 , 13, 3165-3166	5.6	О

(2019-2021)

143	Magnesium accumulation upon cyclin M4 silencing activates microsomal triglyceride transfer protein improving NASH. <i>Journal of Hepatology</i> , 2021 , 75, 34-45	13.4	4
142	O-GlcNAcylated p53 in the liver modulates hepatic glucose production. <i>Nature Communications</i> , 2021 , 12, 5068	17.4	5
141	Inhibition of ATG3 ameliorates liver steatosis by increasing mitochondrial function. <i>Journal of Hepatology</i> , 2021 ,	13.4	1
140	Neddylation inhibition ameliorates steatosis in NAFLD by boosting hepatic fatty acid oxidation via the DEPTOR-mTOR axis. <i>Molecular Metabolism</i> , 2021 , 53, 101275	8.8	2
139	Dual Pharmacological Targeting of HDACs and PDE5 Inhibits Liver Disease Progression in a Mouse Model of Biliary Inflammation and Fibrosis. <i>Cancers</i> , 2020 , 12,	6.6	1
138	GRK2-Dependent HuR Phosphorylation Regulates HIF1[Activation under Hypoxia or Adrenergic Stress. <i>Cancers</i> , 2020 , 12,	6.6	4
137	A Novel Serum Metabolomic Profile for the Differential Diagnosis of Distal Cholangiocarcinoma and Pancreatic Ductal Adenocarcinoma. <i>Cancers</i> , 2020 , 12,	6.6	11
136	Liver osteopontin is required to prevent the progression of age-related nonalcoholic fatty liver disease. <i>Aging Cell</i> , 2020 , 19, e13183	9.9	8
135	Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning Approach. <i>Cancers</i> , 2020 , 12,	6.6	15
134	Silencing hepatic MCJ attenuates non-alcoholic fatty liver disease (NAFLD) by increasing mitochondrial fatty acid oxidation. <i>Nature Communications</i> , 2020 , 11, 3360	17.4	34
133	Targeting Hepatic Glutaminase 1 Ameliorates Non-alcoholic Steatohepatitis by Restoring Very-Low-Density Lipoprotein Triglyceride Assembly. <i>Cell Metabolism</i> , 2020 , 31, 605-622.e10	24.6	24
132	HuR/ELAVL1 drives malignant peripheral nerve sheath tumor growth and metastasis. <i>Journal of Clinical Investigation</i> , 2020 , 130, 3848-3864	15.9	12
131	Arachidyl amido cholanoic acid improves liver glucose and lipid homeostasis in nonalcoholic steatohepatitis AMPK and mTOR regulation. <i>World Journal of Gastroenterology</i> , 2020 , 26, 5101-5117	5.6	10
130	Nutraceutical Properties of Polyphenols against Liver Diseases. <i>Nutrients</i> , 2020 , 12,	6.7	12
129	Multi-Omics Integration Highlights the Role of Ubiquitination in CCl-Induced Liver Fibrosis. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	4
128	Genomic and Functional Regulation of TRIB1 Contributes to Prostate Cancer Pathogenesis. <i>Cancers</i> , 2020 , 12,	6.6	3
127	Methionine Adenosyltransferase I Is Targeted to the Mitochondrial Matrix and Interacts with Cytochrome P450 2E1 to Lower Its Expression. <i>Hepatology</i> , 2019 , 70, 2018-2034	11.2	9
126	Plasticity of adult hepatocytes and readjustment of cell fate: a novel dogma in liver disease. <i>Gut</i> , 2019 , 68, 954-956	19.2	3

125	Current Structural Knowledge on the CNNM Family of Magnesium Transport Mediators. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	22
124	Causes of hOCT1-Dependent Cholangiocarcinoma Resistance to Sorafenib and Sensitization by Tumor-Selective Gene Therapy. <i>Hepatology</i> , 2019 , 70, 1246-1261	11.2	30
123	miR-873-5p targets mitochondrial GNMT-Complex II interface contributing to non-alcoholic fatty liver disease. <i>Molecular Metabolism</i> , 2019 , 29, 40-54	8.8	17
122	Post-translational modifiers of liver kinase B1/serine/threonine kinase 11 in hepatocellular carcinoma. <i>Journal of Hepatocellular Carcinoma</i> , 2019 , 6, 85-91	5.3	8
121	Sphingolipids in Non-Alcoholic Fatty Liver Disease and Hepatocellular Carcinoma: Ceramide Turnover. <i>International Journal of Molecular Sciences</i> , 2019 , 21,	6.3	41
120	SUMO-Binding Entities (SUBEs) as Tools for the Enrichment, Isolation, Identification, and Characterization of the SUMO Proteome in Liver Cancer. <i>Journal of Visualized Experiments</i> , 2019 ,	1.6	2
119	SerpinB3 Differently Up-Regulates Hypoxia Inducible Factors -1[and -2[in Hepatocellular Carcinoma: Mechanisms Revealing Novel Potential Therapeutic Targets. <i>Cancers</i> , 2019 , 11,	6.6	10
118	Structural Insights into the Intracellular Region of the Human Magnesium Transport Mediator CNNM4. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	6
117	Ubiquitin-Like Post-Translational Modifications (Ubl-PTMs): Small Peptides with Huge Impact in Liver Fibrosis. <i>Cells</i> , 2019 , 8,	7.9	7
116	Fine-Tuning of Sirtuin 1 Expression Is Essential to Protect the Liver From Cholestatic Liver Disease. <i>Hepatology</i> , 2019 , 69, 699-716	11.2	21
115	SUMOylation regulates LKB1 localization and its oncogenic activity in liver cancer. <i>EBioMedicine</i> , 2019 , 40, 406-421	8.8	29
114	Epigenetic events involved in organic cation transporter 1-dependent impaired response of hepatocellular carcinoma to sorafenib. <i>British Journal of Pharmacology</i> , 2019 , 176, 787-800	8.6	30
113	HuR biological function involves RRM3-mediated dimerization and RNA binding by all three RRMs. <i>Nucleic Acids Research</i> , 2019 , 47, 1011-1029	20.1	30
112	Serum Metabolites as Diagnostic Biomarkers for Cholangiocarcinoma, Hepatocellular Carcinoma, and Primary Sclerosing Cholangitis. <i>Hepatology</i> , 2019 , 70, 547-562	11.2	54
111	Liver Angiopoietin-2 Is a Key Predictor of De Novo or Recurrent Hepatocellular Cancer After Hepatitis C Virus Direct-Acting Antivirals. <i>Hepatology</i> , 2018 , 68, 1010-1024	11.2	74
110	Neddylation, a novel paradigm in liver cancer. <i>Translational Gastroenterology and Hepatology</i> , 2018 , 3, 37	5.2	19
109	Atorvastatin provides a new lipidome improving early regeneration after partial hepatectomy in osteopontin deficient mice. <i>Scientific Reports</i> , 2018 , 8, 14626	4.9	1
108	Involvement of G protein-coupled receptor kinase 2 (GRK2) in the development of non-alcoholic steatosis and steatohepatitis in mice and humans. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2018 , 1864, 3655-3667	6.9	15

(2016-2018)

107	MiR-873-5p acts as an epigenetic regulator in early stages of liver fibrosis and cirrhosis. <i>Cell Death and Disease</i> , 2018 , 9, 958	9.8	28
106	Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: Results from discovery and validation cohorts. <i>Hepatology Communications</i> , 2018 , 2, 807-820	6	64
105	Metabolomic Identification of Subtypes of Nonalcoholic Steatohepatitis. <i>Gastroenterology</i> , 2017 , 152, 1449-1461.e7	13.3	139
104	Hepatic p63 regulates steatosis via IKK/ER stress. <i>Nature Communications</i> , 2017 , 8, 15111	17.4	32
103	Structural Basis of the Oncogenic Interaction of Phosphatase PRL-1 with the Magnesium Transporter CNNM2. <i>Journal of Biological Chemistry</i> , 2017 , 292, 786-801	5.4	35
102	Prohibitin 1 suppresses liver cancer tumorigenesis in mice and human hepatocellular and cholangiocarcinoma cells. <i>Hepatology</i> , 2017 , 65, 1249-1266	11.2	32
101	Role of Aramchol in steatohepatitis and fibrosis in mice. <i>Hepatology Communications</i> , 2017 , 1, 911-927	6	61
100	Microenvironment inflammatory infiltrate drives growth speed and outcome of hepatocellular carcinoma: a prospective clinical study. <i>Cell Death and Disease</i> , 2017 , 8, e3017	9.8	36
99	The immunosuppressive effect of the tick protein, Salp15, is long-lasting and persists in a murine model of hematopoietic transplant. <i>Scientific Reports</i> , 2017 , 7, 10740	4.9	11
98	Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of Thyroid Hormones on Energy Balance. <i>Cell Metabolism</i> , 2017 , 26, 212-229.e12	24.6	128
97	mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer. <i>Nature</i> , 2017 , 547, 109-113	50.4	92
96	Deregulated neddylation in liver fibrosis. <i>Hepatology</i> , 2017 , 65, 694-709	11.2	28
95	An update on the use of benzoate, phenylacetate and phenylbutyrate ammonia scavengers for interrogating and modifying liver nitrogen metabolism and its implications in urea cycle disorders and liver disease. <i>Expert Opinion on Drug Metabolism and Toxicology</i> , 2017 , 13, 439-448	5.5	27
94	The mitochondrial negative regulator MCJ is a therapeutic target for acetaminophen-induced liver injury. <i>Nature Communications</i> , 2017 , 8, 2068	17.4	45
93	A morphological method for ammonia detection in liver. <i>PLoS ONE</i> , 2017 , 12, e0173914	3.7	18
92	Methionine and S-adenosylmethionine levels are critical regulators of PP2A activity modulating lipophagy during steatosis. <i>Journal of Hepatology</i> , 2016 , 64, 409-418	13.4	43
91	AISF position paper on liver transplantation and pregnancy: Women in Hepatology Group, Italian Association for the Study of the Liver (AISF). <i>Digestive and Liver Disease</i> , 2016 , 48, 860-8	3.3	14
90	Neoangiogenesis-related genes are hallmarks of fast-growing hepatocellular carcinomas and worst survival. Results from a prospective study. <i>Gut</i> , 2016 , 65, 861-9	19.2	136

89	S-adenosyl-L-methionine modifies antioxidant-enzymes, glutathione-biosynthesis and methionine adenosyltransferases-1/2 in hepatitis C virus-expressing cells. <i>World Journal of Gastroenterology</i> , 2016 , 22, 3746-57	5.6	9
88	Metabolomics as a diagnostic tool for idiopathic non-cirrhotic portal hypertension. <i>Liver International</i> , 2016 , 36, 1051-8	7.9	10
87	Stratification and therapeutic potential of PML in metastatic breast cancer. <i>Nature Communications</i> , 2016 , 7, 12595	17.4	26
86	Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. <i>Journal of Cell Biology</i> , 2015 , 210, 153-68	7.3	221
85	NEDDylation in liver cancer: The regulation of the RNA binding protein Hu antigen R. <i>Pancreatology</i> , 2015 , 15, S49-54	3.8	12
84	Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. <i>Seminars in Cancer Biology</i> , 2015 , 35 Suppl, S25-S54	12.7	321
83	Designing a broad-spectrum integrative approach for cancer prevention and treatment. <i>Seminars in Cancer Biology</i> , 2015 , 35 Suppl, S276-S304	12.7	179
82	Targeting of Gamma-Glutamyl-Cysteine Ligase by miR-433 Reduces Glutathione Biosynthesis and Promotes TGF-EDependent Fibrogenesis. <i>Antioxidants and Redox Signaling</i> , 2015 , 23, 1092-105	8.4	41
81	Regulation of oxidative stress by methylation-controlled J protein controls macrophage responses to inflammatory insults. <i>Journal of Infectious Diseases</i> , 2015 , 211, 135-45	7	13
80	Histone deacetylase 4 promotes cholestatic liver injury in the absence of prohibitin-1. <i>Hepatology</i> , 2015 , 62, 1237-48	11.2	25
79	The promyelocytic leukemia protein is upregulated in conditions of obesity and liver steatosis. <i>International Journal of Biological Sciences</i> , 2015 , 11, 629-32	11.2	9
78	The Need for Biomarkers in Diagnosis and Prognosis of Drug-Induced Liver Disease: Does Metabolomics Have Any Role?. <i>BioMed Research International</i> , 2015 , 2015, 386186	3	15
77	Stabilization of LKB1 and Akt by neddylation regulates energy metabolism in liver cancer. Oncotarget, 2015 , 6, 2509-23	3.3	55
76	Activation of a novel c-Myc-miR27-prohibitin 1 circuitry in cholestatic liver injury inhibits glutathione synthesis in mice. <i>Antioxidants and Redox Signaling</i> , 2015 , 22, 259-74	8.4	47
75	TRAIL-producing NK cells contribute to liver injury and related fibrogenesis in the context of GNMT deficiency. <i>Laboratory Investigation</i> , 2015 , 95, 223-36	5.9	21
74	S-Adenosylmethionine increases circulating very-low density lipoprotein clearance in non-alcoholic fatty liver disease. <i>Journal of Hepatology</i> , 2015 , 62, 673-81	13.4	31
73	Repression of the nuclear receptor small heterodimer partner by steatotic drugs and in advanced nonalcoholic fatty liver disease. <i>Molecular Pharmacology</i> , 2015 , 87, 582-94	4.3	18
72	Integrative genomic signatures of hepatocellular carcinoma derived from nonalcoholic Fatty liver disease. <i>PLoS ONE</i> , 2015 , 10, e0124544	3.7	36

71	Systems biology for hepatologists. <i>Hepatology</i> , 2014 , 60, 736-43	11.2	9
70	Glycine N-methyltransferase expression in the hippocampus and its role in neurogenesis and cognitive performance. <i>Hippocampus</i> , 2014 , 24, 840-52	3.5	17
69	SIRT1 controls liver regeneration by regulating bile acid metabolism through farnesoid X receptor and mammalian target of rapamycin signaling. <i>Hepatology</i> , 2014 , 59, 1972-83	11.2	90
68	S-adenosylmethionine levels regulate the schwann cell DNA methylome. <i>Neuron</i> , 2014 , 81, 1024-1039	13.9	56
67	Ubiquitin profiling in liver using a transgenic mouse with biotinylated ubiquitin. <i>Journal of Proteome Research</i> , 2014 , 13, 3016-26	5.6	22
66	The C-terminal RNA binding motif of HuR is a multi-functional domain leading to HuR oligomerization and binding to U-rich RNA targets. <i>RNA Biology</i> , 2014 , 11, 1250-61	4.8	44
65	A DNA methylation signature associated with the epigenetic repression of glycine N-methyltransferase in human hepatocellular carcinoma. <i>Journal of Molecular Medicine</i> , 2013 , 91, 939-5	o ^{5.5}	26
64	The human liver fatty acid binding protein (FABP1) gene is activated by FOXA1 and PPAR[]and repressed by C/EBP[]Implications in FABP1 down-regulation in nonalcoholic fatty liver disease. <i>Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids</i> , 2013 , 1831, 803-18	5	60
63	Metabolomics discloses potential biomarkers for the noninvasive diagnosis of idiopathic portal hypertension. <i>American Journal of Gastroenterology</i> , 2013 , 108, 926-32	0.7	21
62	Excess S-adenosylmethionine reroutes phosphatidylethanolamine towards phosphatidylcholine and triglyceride synthesis. <i>Hepatology</i> , 2013 , 58, 1296-305	11.2	81
61	Methionine adenosyltransferase 2B, HuR, and sirtuin 1 protein cross-talk impacts on the effect of resveratrol on apoptosis and growth in liver cancer cells. <i>Journal of Biological Chemistry</i> , 2013 , 288, 231	6 1 :470	27
60	Solute carrier family 2 member 1 is involved in the development of nonalcoholic fatty liver disease. <i>Hepatology</i> , 2013 , 57, 505-14	11.2	18
59	Human antigen R contributes to hepatic stellate cell activation and liver fibrosis. <i>Hepatology</i> , 2012 , 56, 1870-82	11.2	62
58	The RNA-binding protein human antigen R controls global changes in gene expression during Schwann cell development. <i>Journal of Neuroscience</i> , 2012 , 32, 4944-58	6.6	9
57	Mitochondrial GSH determines the toxic or therapeutic potential of superoxide scavenging in steatohepatitis. <i>Journal of Hepatology</i> , 2012 , 57, 852-9	13.4	60
56	Hepatoma cells from mice deficient in glycine N-methyltransferase have increased RAS signaling and activation of liver kinase B1. <i>Gastroenterology</i> , 2012 , 143, 787-798.e13	13.3	34
55	Murine double minute 2 regulates Hu antigen R stability in human liver and colon cancer through NEDDylation. <i>Hepatology</i> , 2012 , 55, 1237-48	11.2	89
54	Inhibition of natural killer cells protects the liver against acute injury in the absence of glycine N-methyltransferase. <i>Hepatology</i> , 2012 , 56, 747-59	11.2	47

53	Obesity-dependent metabolic signatures associated with nonalcoholic fatty liver disease progression. <i>Journal of Proteome Research</i> , 2012 , 11, 2521-32	5.6	137
52	Biphasic adaptative responses in VLDL metabolism and lipoprotein homeostasis during Gram-negative endotoxemia. <i>Innate Immunity</i> , 2012 , 18, 89-99	2.7	8
51	SAMe and HuR in liver physiology: usefulness of stem cells in hepatic differentiation research. <i>Methods in Molecular Biology</i> , 2012 , 826, 133-49	1.4	6
50	Role of AMP-activated protein kinase in the control of hepatocyte priming and proliferation during liver regeneration. <i>Experimental Biology and Medicine</i> , 2011 , 236, 402-8	3.7	17
49	S-Adenosylmethionine regulates connexins sub-types expressed by hepatocytes. <i>European Journal of Cell Biology</i> , 2011 , 90, 312-22	6.1	9
48	Proteomic profiling of adipose tissue from Zmpste24-/- mice, a model of lipodystrophy and premature aging, reveals major changes in mitochondrial function and vimentin processing. Molecular and Cellular Proteomics, 2011, 10, M111.008094	7.6	46
47	Methionine adenosyltransferase 1A gene deletion disrupts hepatic very low-density lipoprotein assembly in mice. <i>Hepatology</i> , 2011 , 54, 1975-86	11.2	63
46	High-frequency ultrasound imaging for longitudinal evaluation of non-alcoholic fatty liver disease progression in mice. <i>Ultrasound in Medicine and Biology</i> , 2011 , 37, 1161-9	3.5	14
45	The N-terminal domain of the enzyme I is a monomeric well-folded protein with a low conformational stability and residual structure in the unfolded state. <i>Protein Engineering, Design and Selection</i> , 2010 , 23, 729-42	1.9	6
44	Novel function and intracellular localization of methionine adenosyltransferase 2beta splicing variants. <i>Journal of Biological Chemistry</i> , 2010 , 285, 20015-21	5.4	25
43	Liquid chromatography-mass spectrometry-based parallel metabolic profiling of human and mouse model serum reveals putative biomarkers associated with the progression of nonalcoholic fatty liver disease. <i>Journal of Proteome Research</i> , 2010 , 9, 4501-12	5.6	119
42	HuR/methyl-HuR and AUF1 regulate the MAT expressed during liver proliferation, differentiation, and carcinogenesis. <i>Gastroenterology</i> , 2010 , 138, 1943-53	13.3	95
41	Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. <i>Gastroenterology</i> , 2010 , 139, 456-63	13.3	406
40	Binding of S-methyl-5Sthioadenosine and S-adenosyl-L-methionine to protein MJ0100 triggers an open-to-closed conformational change in its CBS motif pair. <i>Journal of Molecular Biology</i> , 2010 , 396, 800	o-28	41
39	Sirtuin 1 regulation of developmental genes during differentiation of stem cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 13736-41	11.5	134
38	The role of stem cells/progenitor cells in liver carcinogenesis in glycine N-methyltransferase deficient mice. <i>Experimental and Molecular Pathology</i> , 2010 , 88, 234-7	4.4	10
37	Fatty liver and fibrosis in glycine N-methyltransferase knockout mice is prevented by nicotinamide. <i>Hepatology</i> , 2010 , 52, 105-14	11.2	64
36	Activation of LKB1-Akt pathway independent of phosphoinositide 3-kinase plays a critical role in the proliferation of hepatocellular carcinoma from nonalcoholic steatohepatitis. <i>Hepatology</i> , 2010 , 52, 1621-31	11.2	52

(2006-2010)

35	Liver-specific deletion of prohibitin 1 results in spontaneous liver injury, fibrosis, and hepatocellular carcinoma in mice. <i>Hepatology</i> , 2010 , 52, 2096-108	11.2	84
34	Non-alcoholic fatty liver disease proteomics. <i>Proteomics - Clinical Applications</i> , 2010 , 4, 362-71	3.1	38
33	Evidence for LKB1/AMP-activated protein kinase/ endothelial nitric oxide synthase cascade regulated by hepatocyte growth factor, S-adenosylmethionine, and nitric oxide in hepatocyte proliferation. <i>Hepatology</i> , 2009 , 49, 608-17	11.2	57
32	Impaired liver regeneration in mice lacking glycine N-methyltransferase. <i>Hepatology</i> , 2009 , 50, 443-52	11.2	31
31	Purification, crystallization and preliminary crystallographic analysis of protein MJ1225 from Methanocaldococcus jannaschii, a putative archaeal homologue of gamma-AMPK. <i>Acta Crystallographica Section F: Structural Biology Communications</i> , 2009 , 65, 813-7		4
30	Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. <i>Oncogene</i> , 2009 , 28, 781	-9.12	221
29	The CBS domain protein MJ0729 of Methanocaldococcus jannaschii is a thermostable protein with a pH-dependent self-oligomerization. <i>Biochemistry</i> , 2009 , 48, 2760-76	3.2	10
28	Non-alcoholic steatohepatitis and animal models: understanding the human disease. <i>International Journal of Biochemistry and Cell Biology</i> , 2009 , 41, 969-76	5.6	88
27	S-adenosylmethionine regulates apurinic/apyrimidinic endonuclease 1 stability: implication in hepatocarcinogenesis. <i>Gastroenterology</i> , 2009 , 136, 1025-36	13.3	30
26	Methionine metabolism and liver disease. <i>Annual Review of Nutrition</i> , 2008 , 28, 273-93	9.9	210
26 25	Methionine metabolism and liver disease. <i>Annual Review of Nutrition</i> , 2008 , 28, 273-93 S-adenosylmethionine and proliferation: new pathways, new targets. <i>Biochemical Society Transactions</i> , 2008 , 36, 848-52	9.9 5.1	210
	S-adenosylmethionine and proliferation: new pathways, new targets. <i>Biochemical Society</i>		
25	S-adenosylmethionine and proliferation: new pathways, new targets. <i>Biochemical Society Transactions</i> , 2008 , 36, 848-52 Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in	5.1	40
25 24	S-adenosylmethionine and proliferation: new pathways, new targets. <i>Biochemical Society Transactions</i> , 2008 , 36, 848-52 Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. <i>Hepatology</i> , 2008 , 47, 1191-9 Crystallization and preliminary crystallographic analysis of merohedrally twinned crystals of MJ0729, a CBS-domain protein from Methanococcus jannaschii. <i>Acta Crystallographica Section F</i> :	5.1	40
25 24 23	S-adenosylmethionine and proliferation: new pathways, new targets. <i>Biochemical Society Transactions</i> , 2008 , 36, 848-52 Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. <i>Hepatology</i> , 2008 , 47, 1191-9 Crystallization and preliminary crystallographic analysis of merohedrally twinned crystals of MJ0729, a CBS-domain protein from Methanococcus jannaschii. <i>Acta Crystallographica Section F: Structural Biology Communications</i> , 2008 , 64, 605-9 Purification, crystallization and preliminary X-ray diffraction analysis of the CBS-domain pair from the Methanococcus jannaschii protein MJ0100. <i>Acta Crystallographica Section F: Structural Biology</i>	5.1	40 220 6
25 24 23 22	S-adenosylmethionine and proliferation: new pathways, new targets. <i>Biochemical Society Transactions</i> , 2008 , 36, 848-52 Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. <i>Hepatology</i> , 2008 , 47, 1191-9 Crystallization and preliminary crystallographic analysis of merohedrally twinned crystals of MJ0729, a CBS-domain protein from Methanococcus jannaschii. <i>Acta Crystallographica Section F: Structural Biology Communications</i> , 2008 , 64, 605-9 Purification, crystallization and preliminary X-ray diffraction analysis of the CBS-domain pair from the Methanococcus jannaschii protein MJ0100. <i>Acta Crystallographica Section F: Structural Biology Communications</i> , 2008 , 64, 936-41 Identification of a gene-pathway associated with non-alcoholic steatohepatitis. <i>Journal of</i>	5.1	40 220 6
25 24 23 22 21	S-adenosylmethionine and proliferation: new pathways, new targets. <i>Biochemical Society Transactions</i> , 2008 , 36, 848-52 Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. <i>Hepatology</i> , 2008 , 47, 1191-9 Crystallization and preliminary crystallographic analysis of merohedrally twinned crystals of MJ0729, a CBS-domain protein from Methanococcus jannaschii. <i>Acta Crystallographica Section F: Structural Biology Communications</i> , 2008 , 64, 605-9 Purification, crystallization and preliminary X-ray diffraction analysis of the CBS-domain pair from the Methanococcus jannaschii protein MJ0100. <i>Acta Crystallographica Section F: Structural Biology Communications</i> , 2008 , 64, 936-41 Identification of a gene-pathway associated with non-alcoholic steatohepatitis. <i>Journal of Hepatology</i> , 2007 , 46, 708-18	5.1	40 220 6 4

17	Methionine adenosyltransferase and S-adenosylmethionine in alcoholic liver disease. <i>Journal of Gastroenterology and Hepatology (Australia)</i> , 2006 , 21 Suppl 3, S61-4	4	20
16	Expression of insulin-like growth factor I by activated hepatic stellate cells reduces fibrogenesis and enhances regeneration after liver injury. <i>Gut</i> , 2005 , 54, 134-41	19.2	72
15	5Smethylthioadenosine modulates the inflammatory response to endotoxin in mice and in rat hepatocytes. <i>Hepatology</i> , 2004 , 39, 1088-98	11.2	71
14	GARBAN: genomic analysis and rapid biological annotation of cDNA microarray and proteomic data. <i>Bioinformatics</i> , 2003 , 19, 2158-60	7.2	26
13	Methionine adenosyltransferase II beta subunit gene expression provides a proliferative advantage in human hepatoma. <i>Gastroenterology</i> , 2003 , 124, 940-8	13.3	70
12	L-methionine availability regulates expression of the methionine adenosyltransferase 2A gene in human hepatocarcinoma cells: role of S-adenosylmethionine. <i>Journal of Biological Chemistry</i> , 2003 , 278, 19885-90	5.4	61
11	Inhibiting expression of specific genes in mammalian cells with 5Send-mutated U1 small nuclear RNAs targeted to terminal exons of pre-mRNA. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 8264-9	11.5	65
10	Regulation of mammalian liver methionine adenosyltransferase. <i>Journal of Nutrition</i> , 2002 , 132, 2377S-	23815	35
9	Crystal structure of MJ1247 protein from M. jannaschii at 2.0 A resolution infers a molecular function of 3-hexulose-6-phosphate isomerase. <i>Structure</i> , 2002 , 10, 195-204	5.2	29
8	S-Adenosylmethionine revisited: its essential role in the regulation of liver function. <i>Alcohol</i> , 2002 , 27, 163-7	2.7	43
7	S-adenosylmethionine and methylthioadenosine are antiapoptotic in cultured rat hepatocytes but proapoptotic in human hepatoma cells. <i>Hepatology</i> , 2002 , 35, 274-80	11.2	111
6	NO sensitizes rat hepatocytes to proliferation by modifying S-adenosylmethionine levels. <i>Gastroenterology</i> , 2002 , 122, 1355-63	13.3	71
5	Spontaneous oxidative stress and liver tumors in mice lacking methionine adenosyltransferase 1A. <i>FASEB Journal</i> , 2002 , 16, 1292-4	0.9	236
4	Assignment of a single disulfide bridge in rat liver methionine adenosyltransferase. <i>FEBS Journal</i> , 2000 , 267, 132-7		11
3	Regulation of rat liver S-adenosylmethionine synthetase during septic shock: role of nitric oxide. <i>Hepatology</i> , 1997 , 25, 391-6	11.2	77
2	Role of thioltransferases on the modulation of rat liver S-adenosylmethionine synthetase activity by glutathione. <i>FEBS Letters</i> , 1996 , 397, 293-7	3.8	23
1	Targeting Hepatic Glutaminase 1 Ameliorates Non-Alcoholic Steatohepatitis by Restoring Disrupted Hepatic Very-Low Density Lipoproteins Triglyceride Assembly. SSRN Electronic Journal,	1	1