Roger Bouillon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5480738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vitamin D and Human Health: Lessons from Vitamin D Receptor Null Mice. Endocrine Reviews, 2008, 29, 726-776.	20.1	1,461
2	Structure-Function Relationships in the Vitamin D Endocrine System*. Endocrine Reviews, 1995, 16, 200-257.	20.1	821
3	Skeletal and Extraskeletal Actions of Vitamin D: Current Evidence and Outstanding Questions. Endocrine Reviews, 2019, 40, 1109-1151.	20.1	611
4	Vitamin D and diabetes. Diabetologia, 2005, 48, 1247-1257.	6.3	550
5	Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiological Reviews, 2017, 97, 135-187.	28.8	541
6	"Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study― Journal of Steroid Biochemistry and Molecular Biology, 2020, 203, 105751.	2.5	538
7	Duodenal calcium absorption in vitamin D receptor-knockout mice: Functional and molecular aspects. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13324-13329.	7.1	531
8	Need for Additional Calcium to Reduce the Risk of Hip Fracture with Vitamin D Supplementation: Evidence from a Comparative Metaanalysis of Randomized Controlled Trials. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1415-1423.	3.6	473
9	Influence of the Vitamin D-binding Protein on the Serum Concentration of 1,25-Dihydroxyvitamin D3. Journal of Clinical Investigation, 1981, 67, 589-596.	8.2	470
10	Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: a position statement of the European Calcified Tissue Society. European Journal of Endocrinology, 2019, 180, P23-P54.	3.7	443
11	Vitamin D deficiency is highly prevalent in COPD and correlates with variants in the vitamin D-binding gene. Thorax, 2010, 65, 215-220.	5.6	379
12	Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D–induced inhibition of bone mineralization. Journal of Clinical Investigation, 2012, 122, 1803-1815.	8.2	306
13	Management of Hypoparathyroidism: Summary Statement and Guidelines. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2273-2283.	3.6	303
14	Acute and Prolonged Critical Illness as Different Neuroendocrine Paradigms1. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 1827-1834.	3.6	290
15	Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. Journal of Clinical Investigation, 2006, 116, 3150-3159.	8.2	287
16	Comparative analysis of nutritional guidelines for vitamin D. Nature Reviews Endocrinology, 2017, 13, 466-479.	9.6	271
17	Vitamin D-binding protein (Gc-globulin) binds actin Journal of Biological Chemistry, 1980, 255, 2270-2272.	3.4	256
18	Rationale and Plan for Vitamin D Food Fortification: A Review and Guidance Paper. Frontiers in Endocrinology, 2018, 9, 373.	3.5	249

#	Article	IF	CITATIONS
19	Optimal Vitamin D Status: A Critical Analysis on the Basis of Evidence-Based Medicine. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1283-E1304.	3.6	234
20	Bone Turnover in Prolonged Critical Illness: Effect of Vitamin D. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 4623-4632.	3.6	228
21	Vitamin D and Diabetes. Endocrinology and Metabolism Clinics of North America, 2010, 39, 419-446.	3.2	228
22	lmmune Regulation of 25-Hydroxyvitamin-D3-1α-Hydroxylase in Human Monocytes. Journal of Bone and Mineral Research, 2006, 21, 37-47.	2.8	222
23	Vitamin D assays and the definition of hypovitaminosis D: results from the First International Conference on Controversies in Vitamin D. British Journal of Clinical Pharmacology, 2018, 84, 2194-2207.	2.4	211
24	Vitamin D-binding protein (Gc-globulin) binds actin. Journal of Biological Chemistry, 1980, 255, 2270-2.	3.4	204
25	25(OH)D2 Half-Life Is Shorter Than 25(OH)D3 Half-Life and Is Influenced by DBP Concentration and Genotype. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 3373-3381.	3.6	203
26	Intestinal Calcium Transporter Genes Are Upregulated by Estrogens and the Reproductive Cycle Through Vitamin D Receptor-Independent Mechanisms. Journal of Bone and Mineral Research, 2003, 18, 1725-1736.	2.8	202
27	Vitamin D deficiency in early life accelerates Type 1 diabetes in non-obese diabetic mice. Diabetologia, 2004, 47, 451-462.	6.3	196
28	Vitamin D and Health: Perspectives From Mice and Man. Journal of Bone and Mineral Research, 2008, 23, 974-979.	2.8	195
29	Estrogens Are Essential for Male Pubertal Periosteal Bone Expansion. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 6025-6029.	3.6	190
30	Consensus statement from 2nd International Conference on Controversies in Vitamin D. Reviews in Endocrine and Metabolic Disorders, 2020, 21, 89-116.	5.7	182
31	The Measurement of the Vitamin D-Binding Protein in Human Serum. Journal of Clinical Endocrinology and Metabolism, 1977, 45, 225-231.	3.6	181
32	The health effects of vitamin D supplementation: evidence from human studies. Nature Reviews Endocrinology, 2022, 18, 96-110.	9.6	181
33	Vitamin D Binding Protein: A Historic Overview. Frontiers in Endocrinology, 2019, 10, 910.	3.5	167
34	REVIEW ARTICLE: Reducing fracture risk with calcium and vitamin D. Clinical Endocrinology, 2010, 73, 277-285.	2.4	154
35	Vitamin D: calcium and bone homeostasis during evolution. BoneKEy Reports, 2014, 3, 480.	2.7	150
36	In Vitro and In Vivo Analysis of the Immune System of Vitamin D Receptor Knockout Mice. Journal of Bone and Mineral Research, 2001, 16, 2057-2065.	2.8	145

#	Article	IF	CITATIONS
37	Free 25-Hydroxyvitamin D: Impact of Vitamin D Binding Protein Assays on Racial-Genotypic Associations. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2226-2234.	3.6	145
38	Thyrotrophin and prolactin release in prolonged critical illness: dynamics of spontaneous secretion and effects of growth hormone-secretagogues. Clinical Endocrinology, 1997, 47, 599-612.	2.4	141
39	Serum 25-Hydroxyvitamin D Levels: Variability, Knowledge Gaps, and the Concept of a Desirable Range. Journal of Bone and Mineral Research, 2015, 30, 1119-1133.	2.8	138
40	Demonstration that 1 beta,25-dihydroxyvitamin D3 is an antagonist of the nongenomic but not genomic biological responses and biological profile of the three A-ring diastereomers of 1 alpha,25-dihydroxyvitamin D3. Journal of Biological Chemistry, 1993, 268, 20022-30.	3.4	134
41	Association between 25-hydroxyvitamin D levels and cognitive performance in middle-aged and older European men. Journal of Neurology, Neurosurgery and Psychiatry, 2009, 80, 722-729.	1.9	130
42	Vitamin D receptor stimulation to reduce acute respiratory distress syndrome (ARDS) in patients with coronavirus SARS-CoV-2 infections. Journal of Steroid Biochemistry and Molecular Biology, 2020, 202, 105719.	2.5	128
43	Is calcifediol better than cholecalciferol for vitamin D supplementation?. Osteoporosis International, 2018, 29, 1697-1711.	3.1	127
44	A structural basis for the unique binding features of the human vitamin D-binding protein. Nature Structural Biology, 2002, 9, 131-136.	9.7	125
45	Vitamin D metabolites in captivity? Should we measure free or total 25(OH)D to assess vitamin D status?. Journal of Steroid Biochemistry and Molecular Biology, 2017, 173, 105-116.	2.5	125
46	Vitamin D and energy homeostasis—of mice and men. Nature Reviews Endocrinology, 2014, 10, 79-87.	9.6	121
47	Controversies in Vitamin D: A Statement From the Third International Conference. JBMR Plus, 2020, 4, e10417.	2.7	118
48	Comparative study of the affinity of the serum vitamin d-binding protein. The Journal of Steroid Biochemistry, 1980, 13, 1029-1034.	1.1	117
49	Age-Related (Type II) Femoral Neck Osteoporosis in Men: Biochemical Evidence for Both Hypovitaminosis D- and Androgen Deficiency-Induced Bone Resorption. Journal of Bone and Mineral Research, 1997, 12, 2119-2126.	2.8	116
50	Vitamin D and SARS-CoV-2 virus/COVID-19 disease. BMJ Nutrition, Prevention and Health, 2020, 3, 106-110.	3.7	116
51	Sunscreen photoprotection and vitamin D status. British Journal of Dermatology, 2019, 181, 916-931.	1.5	115
52	Prevention of Type I Diabetes in Nonobese Diabetic Mice by Late Intervention with Nonhypercalcemic Analogs of 1,25-Dihydroxyvitamin D3 in Combination with a Short Induction Course of Cyclosporin A*. Endocrinology, 1998, 139, 95-102.	2.8	112
53	Vitamin D signaling in calcium and bone homeostasis: A delicate balance. Best Practice and Research in Clinical Endocrinology and Metabolism, 2015, 29, 621-631.	4.7	110
54	Down-Regulation of the Serum Stimulatory Components of the Insulin-like Growth Factor (IGF) System (IGF-I, IGF-II, IGF Binding Protein [BP]-3, and IGFBP-5) in Age-Related (Type II) Femoral Neck Osteoporosis. Journal of Bone and Mineral Research, 1999, 14, 2150-2158.	2.8	106

#	Article	IF	CITATIONS
55	25-HYDROXY-VITAMIN-D IN NEPHROTIC SYNDROME. Lancet, The, 1977, 310, 105-108.	13.7	100
56	1,25-Dihydroxyvitamin D3 and analogues protect primary human keratinocytes against UVB-induced DNA damage. Journal of Photochemistry and Photobiology B: Biology, 2005, 78, 141-148.	3.8	96
57	Vitamin D status at breast cancer diagnosis: correlation with tumor characteristics, disease outcome, and genetic determinants of vitamin D insufficiency. Carcinogenesis, 2012, 33, 1319-1326.	2.8	95
58	Vitamin D insufficiency: Definition, diagnosis and management. Best Practice and Research in Clinical Endocrinology and Metabolism, 2018, 32, 669-684.	4.7	85
59	Role of Assay Type in Determining Free 25-Hydroxyvitamin D Levels in Diverse Populations. New England Journal of Medicine, 2016, 374, 1695-1696.	27.0	83
60	Relationship Between Baseline Insulinâ€Like Growth Factorâ€I (IGFâ€I) and Femoral Bone Density in Women Aged Over 70 Years: Potential Implications for the Prevention of Ageâ€Related Bone Loss. Journal of the American Geriatrics Society, 1996, 44, 1301-1306.	2.6	78
61	The effect of microgravity on morphology and gene expression of osteoblasts <i>in vitro</i> . FASEB Journal, 1999, 13, S129-34.	0.5	78
62	Pituitary responsiveness to GHâ€releasing hormone, GHâ€releasing peptideâ€2 and thyrotrophinâ€releasing hormone in critical illness. Clinical Endocrinology, 1996, 45, 341-351.	2.4	75
63	Primary role of the HLA class II DRB1*0301 allele in graves disease. American Journal of Medical Genetics Part A, 2000, 95, 432-437.	2.4	75
64	Development of a Method for the Quantification of 1 <i>α</i> ,25(OH) ₂ –Vitamin D ₃ in Serum by Liquid Chromatography Tandem Mass Spectrometry without Derivatization. European Journal of Mass Spectrometry, 2010, 16, 81-89.	1.0	74
65	Determination of Free 25(OH)D Concentrations and Their Relationships to Total 25(OH)D in Multiple Clinical Populations. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3278-3288.	3.6	74
66	Vitamin D: Dosing, levels, form, and route of administration: Does one approach fit all?. Reviews in Endocrine and Metabolic Disorders, 2021, 22, 1201-1218.	5.7	74
67	Calcium, vitamin D-endocrine system, and parathyroid hormone in black and white males. Calcified Tissue International, 1987, 41, 70-74.	3.1	72
68	Calcifediol Treatment and Hospital Mortality Due to COVID-19: A Cohort Study. Nutrients, 2021, 13, 1760.	4.1	71
69	Endocrine determinants of incident sarcopenia in middle-aged and elderly European men. Journal of Cachexia, Sarcopenia and Muscle, 2015, 6, 242-252.	7.3	68
70	Vitamin D Metabolism Revised: Fall of Dogmas. Journal of Bone and Mineral Research, 2019, 34, 1985-1992.	2.8	66
71	Paracrine role for calcitriol in the immune system and skin creates new therapeutic possibilities for vitamin D analogs. European Journal of Endocrinology, 1995, 133, 7-16.	3.7	65
72	Vitamin D: direct effects of vitamin D metabolites on bone: lessons from genetically modified mice. BoneKEy Reports, 2014, 3, 499.	2.7	63

#	Article	IF	CITATIONS
73	Calcifediol Treatment and COVID-19–Related Outcomes. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e4017-e4027.	3.6	60
74	Structure-function studies of 1,25-dihydroxyvitamin D3 and the vitamin D endocrine system. 1,25-dihydroxy-pentadeuterio-previtamin D3 (as a 6-s-cis analog) stimulates nongenomic but not genomic biological responses. Journal of Biological Chemistry, 1993, 268, 13811-9.	3.4	60
75	Bone Status and Fracture Prevalence in Russian Adults with Childhood-Onset Growth Hormone Deficiency. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 4993-4998.	3.6	55
76	Calcium and bone homeostasis in heterozygous carriers of CYP24A1 mutations: A cross-sectional study. Bone, 2015, 81, 89-96.	2.9	54
77	1,25-Dihydroxyvitamin D and Vitamin D-Binding Protein Are Both Decreased in Streptozotocin-Diabetic Rats*. Endocrinology, 1985, 116, 2483-2488.	2.8	51
78	Fiveâ€year followâ€up of growth hormone antibodies in growth hormone deficient children treated with recombinant human growth hormone. Clinical Endocrinology, 1993, 38, 137-142.	2.4	50
79	Prevention of type I diabetes in NOD mice by nonhypercalcemic doses of a new structural analog of 1,25-dihydroxyvitamin D3, KH1060. Endocrinology, 1995, 136, 866-872.	2.8	49
80	Vitamin D Metabolites and Their Binding Protein in Adult Diabetic Patients. Diabetes, 1986, 35, 911-915.	0.6	46
81	Fracture risk in adult patients treated with growth hormone replacement therapy for growth hormone deficiency: a prospective observational cohort study. Lancet Diabetes and Endocrinology,the, 2015, 3, 331-338.	11.4	45
82	Genetic and Racial Differences in the Vitamin D Endocrine System. Endocrinology and Metabolism Clinics of North America, 2017, 46, 1119-1135.	3.2	45
83	Free or Total 250HD as Marker for Vitamin D Status?. Journal of Bone and Mineral Research, 2016, 31, 1124-1127.	2.8	44
84	PDLIM2 expression is driven by vitamin D and is involved in the pro-adhesion, and anti-migration and -invasion activity of vitamin D. Oncogene, 2014, 33, 1904-1911.	5.9	42
85	Genetic and environmental determinants of vitamin D status. Lancet, The, 2010, 376, 148-149.	13.7	41
86	Rickets due to dietary calcium deficiency. European Journal of Pediatrics, 1989, 148, 784-785.	2.7	40
87	The impact of 1,25(OH)2D3 and its structural analogs on gene expression in cancer cells–a microarray approach. Anticancer Research, 2009, 29, 3471-83.	1.1	40
88	Real world evidence of calcifediol or vitamin D prescription and mortality rate of COVID-19 in a retrospective cohort of hospitalized Andalusian patients. Scientific Reports, 2021, 11, 23380.	3.3	39
89	Serum levels of growth hormone-binding protein and insulin-like growth factor-I during puberty. Clinical Endocrinology, 1992, 37, 175-180.	2.4	38
90	High Dose Vitamin D supplementation alters faecal microbiome and predisposes mice to more severe colitis. Scientific Reports, 2018, 8, 11511.	3.3	37

#	Article	IF	CITATIONS
91	Measurement of vitamin D and its metabolites (calcidiol and calcitriol) and their clinical significance. Scandinavian Journal of Clinical and Laboratory Investigation, 1997, 57, 35-45.	1.2	36
92	Physiological functions of vitamin D: what we have learned from global and conditional VDR knockout mouse studies. Current Opinion in Pharmacology, 2015, 22, 87-99.	3.5	36
93	Vitamin D Supplementation and Fractures in Adults: A Systematic Umbrella Review of Meta-Analyses of Controlled Trials. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 882-898.	3.6	35
94	Prevention of Type I Diabetes in Nonobese Diabetic Mice by Late Intervention with Nonhypercalcemic Analogs of 1,25-Dihydroxyvitamin D3 in Combination with a Short Induction Course of Cyclosporin A. Endocrinology, 1998, 139, 95-102.	2.8	34
95	Associations of 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D With Bone Mineral Density, Bone Mineral Density Change, and Incident Nonvertebral Fracture. Journal of Bone and Mineral Research, 2015, 30, 1403-1413.	2.8	32
96	Nutritional rickets: Historic overview and plan for worldwide eradication. Journal of Steroid Biochemistry and Molecular Biology, 2020, 198, 105563.	2.5	32
97	Calcifediol is superior to cholecalciferol in improving vitamin D status in postmenopausal women: a randomized trial. Journal of Bone and Mineral Research, 2020, 36, 1967-1978.	2.8	32
98	Vitamin D and cardiovascular disorders. Osteoporosis International, 2019, 30, 2167-2181.	3.1	31
99	Vitamin D status in Africa is worse than in other continents. The Lancet Global Health, 2020, 8, e20-e21.	6.3	31
100	Associations of total and free 25OHD and 1,25(OH)2D with serum markers of inflammation in older men. Osteoporosis International, 2016, 27, 2291-2300.	3.1	27
101	An Aged Rat Model of Partial Androgen Deficiency: Prevention of Both Loss of Bone and Lean Body Mass by Low-Dose Androgen Replacement. Endocrinology, 2000, 141, 1642-1647.	2.8	26
102	Effects of vitamin D-binding protein on bone resorption stimulated by 1,25 dihydroxyvitamin D3. Calcified Tissue International, 1990, 47, 164-168.	3.1	25
103	Low vitamin D and the risk of developing chronic widespread pain: results from the European male ageing study. BMC Musculoskeletal Disorders, 2016, 17, 32.	1.9	25
104	Prevention of autoimmune diabetes in NOD mice by 1,25 dihydroxyvitamin D 3. Diabetologia, 1994, 37, 552-558.	6.3	25
105	The Vitamin D Binding Protein DBP. , 2011, , 57-72.		22
106	Vitamin D supplementation in respiratory diseases - evidence from RCT. Polish Archives of Internal Medicine, 2017, 127, 775-784.	0.4	22
107	UVBâ€induced 1,25(OH) ₂ D ₃ production and vitamin D activity in intestinal CaCoâ€2 cells and in THPâ€1 macrophages pretreated with a sterol Δ ⁷ â€reductase inhibitor. Journal of Cellular Biochemistry, 2006, 99, 229-240.	2.6	20
108	Forkhead box O transcription factors in chondrocytes regulate endochondral bone formation. Journal of Steroid Biochemistry and Molecular Biology, 2016, 164, 337-343.	2.5	20

#	Article	IF	CITATIONS
109	Dermal fibroblasts pretreated with a sterol î"7-reductase inhibitor produce 25-hydroxyvitamin D3 upon UVB irradiation. Journal of Photochemistry and Photobiology B: Biology, 2006, 85, 72-78.	3.8	19
110	Vitamin D as Potential Baseline Therapy for Blood Pressure Control. American Journal of Hypertension, 2009, 22, 816-816.	2.0	19
111	Is Vitamin D2 Really Bioequivalent to Vitamin D3?. Endocrinology, 2016, 157, 3384-3387.	2.8	19
112	Vitamin D Endocrine System and COVID-19: Treatment with Calcifediol. Nutrients, 2022, 14, 2716.	4.1	19
113	Clinical Applications for Vitamin D Assays: What Is Known and What Is Wished for. Clinical Chemistry, 2011, 57, 1227-1232.	3.2	18
114	1β,25-Dihydroxyvitamin D 3 : A new vitamin D metabolite in human serum. Journal of Steroid Biochemistry and Molecular Biology, 2017, 173, 341-348.	2.5	18
115	Vitamin D supplementation and musculoskeletal health. Lancet Diabetes and Endocrinology,the, 2019, 7, 85-86.	11.4	18
116	Why modest but widespread improvement of the vitamin D status is the best strategy?. Best Practice and Research in Clinical Endocrinology and Metabolism, 2011, 25, 693-702.	4.7	17
117	Vitamin D Receptor and Vitamin D Action in Muscle. Endocrinology, 2014, 155, 3210-3213.	2.8	15
118	Calcifediol (250H Vitamin D3) Deficiency: A Risk Factor from Early to Old Age. Nutrients, 2022, 14, 1168.	4.1	15
119	The Vitamin D Receptor in Thyroid Development and Function. European Thyroid Journal, 2012, 1, 168-175.	2.4	14
120	Safety of High-Dose Vitamin D Supplementation. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1290-1291.	3.6	14
121	Effects of opioid antagonism on the haemodynamic and hormonal responses to exercise. Clinical Science, 1988, 75, 293-300.	4.3	13
122	Total, Bioavailable, and Free 25(OH)D Relationship with Indices of Bone Health in Elderly: A Randomized Controlled Trial. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e990-e1001.	3.6	13
123	Vitamin <scp>D</scp> Endocrine System and <scp>COVIDâ€19</scp> . JBMR Plus, 2021, 5, e10576.	2.7	13
124	The past 10 years—new hormones, new functions, new endocrine organs. Nature Reviews Endocrinology, 2015, 11, 681-686.	9.6	12
125	Vitamin D: Giveth to Those Who Needeth. JBMR Plus, 2020, 4, e10232.	2.7	12
126	Vitamin D action: lessons from VDR and Cyp27b1 null mice. Pediatric Endocrinology Reviews, 2013, 10 Suppl 2, 354-66.	1.2	11

#	Article	IF	CITATIONS
127	Biochemical and density assessment of the new bone in late remodeling after callus distraction. Journal of Orthopaedic Research, 1997, 15, 391-397.	2.3	10
128	1,25-Dihydroxyvitamin D3induction of the tissue-type plasminogen activator gene is mediated through its multihormone-responsive enhancer. FEBS Letters, 1999, 460, 289-296.	2.8	10
129	The white adipose tissue connection with calcium and bone homeostasis. Journal of Bone and Mineral Research, 2010, 25, 1707-1710.	2.8	9
130	The Power of Mass Spectroscopy as Arbiter for Immunoassays. Clinical Chemistry, 2016, 62, 6-8.	3.2	9
131	Optimal vitamin D supplementation strategies. Endocrine, 2017, 56, 225-226.	2.3	9
132	The Vitamin D-Binding Protein. , 2018, , 97-115.		9
133	Relationship of Total and Free 25-Hydroxyvitamin D to Biomarkers and Metabolic Indices in Healthy Children. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e1631-e1640.	3.6	9
134	Increased and decreased relative risk for noninsulinâ€dependent diabetes mellitus conferred by HLA class II and by CD4 alleles. Clinical Genetics, 1995, 47, 225-230.	2.0	8
135	Effect of Intravenous 250HD Supplementation on Bone Turnover and Inflammation in Prolonged Critically III Patients. Hormone and Metabolic Research, 2020, 52, 168-178.	1.5	8
136	Does a better vitamin D status help to reduce cardiovascular risks and events?. Endocrine, 2014, 47, 662-663.	2.3	7
137	Hypervitaminosis D Associated With Tanning Bed Use: A Case Report. Annals of Internal Medicine, 2017, 166, 155.	3.9	7
138	How much vitamin D is needed for healthy bones?. Journal of Internal Medicine, 2017, 282, 461-464.	6.0	7
139	Lack of Effect of the Vitamin D Status on the Concentration of the Vitamin D-Binding Protein in Rat Serum*. Endocrinology, 1980, 107, 160-163.	2.8	6
140	How Important Is Vitamin D for Calcium Homeostasis During Pregnancy and Lactation?. Journal of Bone and Mineral Research, 2018, 33, 13-15.	2.8	6
141	Nutritional rickets: calcium or vitamin D deficiency?. American Journal of Clinical Nutrition, 2021, 114, 3-4.	4.7	6
142	Aging Men With Insufficient Vitamin D Have a Higher Mortality Risk: No Added Value of its Free Fractions or Active Form. Journal of Clinical Endocrinology and Metabolism, 2021, , .	3.6	6
143	Association of particular HLA class II alleles, haplotypes and genotypes with susceptibility to IDDM in the Belgian population. Diabetologia, 1994, 37, 808-817.	6.3	5
144	Measuring Vitamin D3 Metabolic Status, Comparison between Vitamin D Deficient and Sufficient Individuals. Separations, 2022, 9, 141.	2.4	5

#	Article	IF	CITATIONS
145	Hypercalcaemia In Hodgkjn'S Disease. Acta Clinica Belgica, 1986, 41, 32-42.	1.2	3
146	The effect of microgravity on 1,25-dihydroxyvitamin d3 signalling in osteoblasts. Microgravity Science and Technology, 2007, 19, 154-158.	1.4	3
147	Highlights from the 18th workshop on vitamin D, Delft, The Netherlands, April 21–24, 2015. Journal of Steroid Biochemistry and Molecular Biology, 2016, 164, 1-3.	2.5	3
148	WY 1048, a 17-methyl 19-nor D-ring analog of vitamin D3, in combination with risedronate restores bone mass in a mouse model of postmenopausal osteoporosis. Journal of Steroid Biochemistry and Molecular Biology, 2019, 188, 124-130.	2.5	3
149	25-OHD response to vitamin D supplementation in children: effect of dose but not GC haplotype. European Journal of Endocrinology, 2021, 185, 333-342.	3.7	3
150	Introduction: Special Issue on Vitamin D Dedicated to the Memory of Anthony W Norman. JBMR Plus, 2021, 5, e10445.	2.7	3
151	Hypercalcaemia in Hodgkin's disease. Acta Clinica Belgica, 1986, 41, 37-42.	1.2	3
152	<scp>UK</scp> Nutrition Research Partnership â€~Hot Topic' workshop: Vitamin D—A multiâ€disciplinary approach to (1) elucidate its role in human health and (2) develop strategies to improve vitamin D status in the <scp>UK</scp> population. Nutrition Bulletin, 0, , .	1.8	3
153	Can vitamin D prevent falls and fractures?. Lancet Diabetes and Endocrinology,the, 2017, 5, 407-409.	11.4	2
154	Vitamin D and the skeleton. Current Opinion in Endocrine and Metabolic Research, 2018, 3, 68-73.	1.4	2
155	Renal cadaveric transplantation in diabetics using total lymphoid irradiation or cyclosporin A: A controlled randomized study. Transplant International, 1988, 1, 64-68.	1.6	1
156	Which model to predict fracture risk?. Nature Reviews Endocrinology, 2014, 10, 194-195.	9.6	1
157	Highlights from the 19 th Workshop on Vitamin D in Boston, March 29–31, 2016. Journal of Steroid Biochemistry and Molecular Biology, 2017, 173, 1-4.	2.5	1
158	Textiloma-Induced 1,25-Dihydroxyvitamin D–Mediated Hypercalcemia: A Case Report and Literature Study. Journal of the Endocrine Society, 2019, 3, 2158-2164.	0.2	1
159	Vitamin D: good or bad for muscle strength?. Journal of Bone and Mineral Research, 2020, 36, 1649-1650.	2.8	1
160	Vitamin D and Bone Health: Basic and Clinical Aspects. Contemporary Endocrinology, 2020, , 71-87.	0.1	1
161	Suplementación con vitamina D y salud musculoesquelética. Una necesidad discutida. Medicina ClÃnica, 2019, 153, 432-436.	0.6	1
162	Second Herbert Fleisch Workshop, 2016. IBMS BoneKEy, 2016, 13, 819.	0.0	0

#	Article	lF	CITATIONS
163	Calcifediol or vitamin D to optimize vitamin D status: Reply to letter of M Sosas. Osteoporosis International, 2019, 30, 2521-2522.	3.1	Ο
164	Vitamin D supplementation and musculoskeletal health. A controversial necessity. Medicina ClÃnica (English Edition), 2019, 153, 432-436.	0.2	0
165	Reply to †The emerging evidence for non-skeletal health benefits of vitamin D supplementation in adults'. Nature Reviews Endocrinology, 2022, , .	9.6	0
166	Reply to Calcifediol Is Not Superior to Cholecalciferol in Improving Vitamin D Status in Postmenopausal Women. Journal of Bone and Mineral Research, 2020, 37, 1413-1415.	2.8	0