Bethany K Redel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5480022/publications.pdf

Version: 2024-02-01

18	482	11	17
papers	citations	h-index	g-index
18	18	18	554
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Gene editing provides a tool to investigate genes involved in reproduction of pigs. Molecular Reproduction and Development, 2023, 90, 459-468.	2.0	O
2	Production of Pigs From Porcine Embryos Generated in vitro. Frontiers in Animal Science, 2022, 3, .	1.9	10
3	Neither gonadotropin nor cumulus cell expansion is needed for the maturation of competent porcine oocytes in vitroâ€. Biology of Reproduction, 2021, 105, 533-542.	2.7	8
4	Cardiovascular Development and Congenital Heart Disease Modeling in the Pig. Journal of the American Heart Association, 2021, 10, e021631.	3.7	21
5	Effects of RAD51-stimulatory compound 1 (RS-1) and its vehicle, DMSO, on pig embryo culture. Reproductive Toxicology, 2021, 105, 44-52.	2.9	3
6	Challenges and Considerations during In Vitro Production of Porcine Embryos. Cells, 2021, 10, 2770.	4.1	15
7	A porcine model of phenylketonuria generated by CRISPR/Cas9 genome editing. JCI Insight, 2020, 5, .	5.0	29
8	In Vitro Maturation, Fertilization, and Culture of Pig Oocytes and Embryos. Methods in Molecular Biology, 2019, 2006, 93-103.	0.9	23
9	Pharmacologic treatment of donor cells induced to have a Warburg effectâ€ike metabolism does not alter embryonic development in vitro or survival during early gestation when used in somatic cell nuclear transfer in pigs. Molecular Reproduction and Development, 2018, 85, 290-302.	2.0	5
10	Glutamine supplementation enhances development of in vitro-produced porcine embryos and increases leucine consumption from the mediumâ€. Biology of Reproduction, 2018, 99, 938-948.	2.7	42
11	Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5796-E5804.	7.1	102
12	Glycine supplementation in vitro enhances porcine preimplantation embryo cell number and decreases apoptosis but does not lead to live births. Molecular Reproduction and Development, 2016, 83, 246-258.	2.0	33
13	Meganucleases Revolutionize the Production of Genetically Engineered Pigs for the Study of Human Diseases. Toxicologic Pathology, 2016, 44, 428-433.	1.8	21
14	PS48 can replace bovine serum albumin in pig embryo culture medium, and improve in vitro embryo development by phosphorylating AKT. Molecular Reproduction and Development, 2015, 82, 315-320.	2.0	23
15	Arginine increases development of in vitro-produced porcine embryos and affects the protein arginine methyltransferase–dimethylarginine dimethylaminohydrolase–nitric oxide axis. Reproduction, Fertility and Development, 2015, 27, 655.	0.4	32
16	Dickkopf-Related Protein 1 Inhibits the WNT Signaling Pathway and Improves Pig Oocyte Maturation. PLoS ONE, 2014, 9, e95114.	2.5	23
17	Glycolysis in preimplantation development is partially controlled by the Warburg Effect. Molecular Reproduction and Development, 2012, 79, 262-271.	2.0	82
18	Replacement of bovine serum albumin with <i>N</i> â€methylâ€ <scp>D</scp> â€aspartic acid and homocysteine improves development, but not live birth. Molecular Reproduction and Development, 2012, 79, 310-310.	2.0	10