L Eric Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5479656/publications.pdf

Version: 2024-02-01

159358 182168 6,851 51 30 51 citations h-index g-index papers 52 52 52 7829 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Impact of CDKN2A/B Homozygous Deletion on the Prognosis and Biology of IDH-Mutant Glioma. Biomedicines, 2022, 10, 246.	1.4	18
2	Association of TP53 Alteration with Tissue Specificity and Patient Outcome of IDH1-Mutant Glioma. Cells, 2021, 10, 2116.	1.8	8
3	The neural stem-cell marker CD24 is specifically upregulated in IDH-mutant glioma. Translational Oncology, 2020, 13, 100819.	1.7	9
4	Extracellular glutamate and IDH1R132H inhibitor promote glioma growth by boosting redox potential. Journal of Neuro-Oncology, 2020, 146, 427-437.	1.4	14
5	Friend or foe—IDH1 mutations in glioma 10 years on. Carcinogenesis, 2019, 40, 1299-1307.	1.3	58
6	Functional requirement of a wild-type allele for mutant IDH1 to suppress anchorage-independent growth through redox homeostasis. Acta Neuropathologica, 2018, 135, 285-298.	3.9	10
7	In Vivo Manipulation of HIF-1α Expression During Glioma Genesis. Methods in Molecular Biology, 2018, 1742, 227-235.	0.4	1
8	Prognostic role of mitochondrial pyruvate carrier in isocitrate dehydrogenase–mutant glioma. Journal of Neurosurgery, 2018, 130, 56-66.	0.9	14
9	IDH1R132H is intrinsically tumor-suppressive but functionally attenuated by the glutamate-rich cerebral environment. Oncotarget, 2018, 9, 35100-35113.	0.8	9
10	The Impact of Hypoxia and Mesenchymal Transition on Glioblastoma Pathogenesis and Cancer Stem Cells Regulation. World Neurosurgery, 2016, 88, 222-236.	0.7	14
11	Intermittent Induction of HIF-1α Produces Lasting Effects on Malignant Progression Independent of Its Continued Expression. PLoS ONE, 2015, 10, e0125125.	1.1	14
12	Complex role of HIF in cancer: the known, the unknown, and the unexpected. Hypoxia (Auckland, N Z), 2014, 2, 59.	1.9	11
13	How HIF-1α Handles Stress. Science, 2013, 339, 1285-1286.	6.0	18
14	An Efficient Way of Studying Protein–Protein Interactions Involving HIF-α, c-Myc, and Sp1. Methods in Molecular Biology, 2013, 1012, 77-84.	0.4	2
15	von Hippel-Lindau protein adjusts oxygen sensing of the FIH asparaginyl hydroxylase. International Journal of Biochemistry and Cell Biology, 2011, 43, 795-804.	1.2	9
16	CITED2 controls the hypoxic signaling by snatching p300 from the two distinct activation domains of HIF- $1\hat{l}_{\pm}$. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 2008-2016.	1.9	28
17	HIF-1α Mediates Tumor Hypoxia to Confer a Perpetual Mesenchymal Phenotype for Malignant ProgressionA presentation from the Keystone Symposium on Epithelial Plasticity and Epithelial-to-Mesenchymal Transition, Vancouver, British Columbia, Canada, 21 to 26 January 2011 Science Signaling, 2011, 4, pt4.	1.6	34
18	HIF-1α Confers Aggressive Malignant Traits on Human Tumor Cells Independent of Its Canonical Transcriptional Function. Cancer Research, 2011, 71, 1244-1252.	0.4	56

#	Article	IF	CITATIONS
19	Requirement of evading apoptosis for HIF-1α-induced malignant progression in mouse cells. Cell Cycle, 2011, 10, 2364-2372.	1.3	16
20	From antiangiogenesis to hypoxia: current research and future directions. Cancer Management and Research, 2010, 3, 9.	0.9	13
21	Nutlin-3, an Hdm2 antagonist, inhibits tumor adaptation to hypoxia by stimulating the FIH-mediated inactivation of HIF-1 \hat{l}_{\pm} . Carcinogenesis, 2009, 30, 1768-1775.	1.3	47
22	An Essential Role of the HIFâ€1α–câ€Myc Axis in Malignant Progression. Annals of the New York Academy of Sciences, 2009, 1177, 198-204.	1.8	35
23	Carrot and stick: HIF-α engages c-Myc in hypoxic adaptation. Cell Death and Differentiation, 2008, 15, 672-677.	5.0	128
24	Bortezomib inhibits tumor adaptation to hypoxia by stimulating the FIH-mediated repression of hypoxia-inducible factor-1. Blood, 2008, 111, 3131-3136.	0.6	158
25	Hypoxic Suppression of the Cell Cycle Gene <i>CDC25A</i> ii>in Tumor Cells. Cell Cycle, 2007, 6, 1919-1926.	1.3	54
26	Can Irradiated Tumors Take NO for an Answer?. Molecular Cell, 2007, 26, 157-158.	4.5	2
27	Hypoxia-induced genetic instability—a calculated mechanism underlying tumor progression. Journal of Molecular Medicine, 2007, 85, 139-148.	1.7	128
28	Amphotericin B blunts erythropoietin response to hypoxia by reinforcing FIH-mediated repression of HIF-1. Blood, 2006, 107, 916-923.	0.6	73
29	The phosphorylation status of PAS-B distinguishes HIF-1α from HIF-2α in NBS1 repression. EMBO Journal, 2006, 25, 4784-4794.	3.5	111
30	Suppression of VEGF transcription in renal cell carcinoma cells by pyrrole-imidazole hairpin polyamides targeting the hypoxia responsive element. Acta Oncol \tilde{A}^3 gica, 2006, 45, 317-324.	0.8	28
31	Hypoxia facilitates Alzheimer's disease pathogenesis by up-regulating BACE1 gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18727-18732.	3.3	529
32	Tumor suppressor p53 represses transcription of RECQ4 helicase. Oncogene, 2005, 24, 1738-1748.	2.6	75
33	Differential Gene Up-Regulation by Hypoxia-Inducible Factor- $1\hat{l}\pm$ and Hypoxia-Inducible Factor- $2\hat{l}\pm$ in HEK293T Cells. Cancer Research, 2005, 65, 3299-3306.	0.4	282
34	Suppression of Hypoxia-inducible Factor $1\hat{l}_{\pm}$ (HIF- $1\hat{l}_{\pm}$) Transcriptional Activity by the HIF Prolyl Hydroxylase EGLN1. Journal of Biological Chemistry, 2005, 280, 38102-38107.	1.6	92
35	Genetic Instability: The Dark Side of THE Hypoxic Response. Cell Cycle, 2005, 4, 881-882.	1.3	28
36	HIF-1α Induces Genetic Instability by Transcriptionally Downregulating MutSα Expression. Molecular Cell, 2005, 17, 793-803.	4.5	332

#	Article	IF	CITATIONS
37	Hypoxia-Inducible Factor-1 Transactivates Transforming Growth Factor- \hat{l}^2 3 in Trophoblast. Endocrinology, 2004, 145, 4113-4118.	1.4	84
38	A New Look at Rho GTPases in the Cell Cycle: Their Role in Kinetochore-Microtubule Attachment. Cell Cycle, 2004, 3, 853-855.	1.3	58
39	Dynamic Balancing of the Dual Nature of HIF-1alpha for Cell Survival. Cell Cycle, 2004, 3, 851-852.	1.3	41
40	Leuâ€574 of human HIFâ€1α is a molecular determinant of prolyl hydroxylation. FASEB Journal, 2004, 18, 1028-1030.	0.2	62
41	HIF-1α induces cell cycle arrest by functionally counteracting Myc. EMBO Journal, 2004, 23, 1949-1956.	3.5	581
42	Targeting HIF-α: when a magic arrow hits the bull's eye. Drug Discovery Today, 2004, 9, 869.	3.2	2
43	Hypoxia-inducible Factor and Its Biomedical Relevance. Journal of Biological Chemistry, 2003, 278, 19575-19578.	1.6	274
44	Leu-574 of HIF- $\hat{\Pi}$ ± Is Essential for the von Hippel-Lindau (VHL)-mediated Degradation Pathway. Journal of Biological Chemistry, 2002, 277, 41750-41755.	1.6	33
45	Molecular Mechanism of Hypoxia-inducible Factor 1α-p300 Interaction. Journal of Biological Chemistry, 2001, 276, 3550-3554.	1.6	118
46	Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1alpha. Genes and Development, 2001, 15, 2520-2532.	2.7	275
47	Ubiquitination of hypoxia-inducible factor requires direct binding to the \hat{l}^2 -domain of the von Hippelâ \in "Lindau protein. Nature Cell Biology, 2000, 2, 423-427.	4.6	1,423
48	Inhibition of Hypoxia-inducible Factor 1 Activation by Carbon Monoxide and Nitric Oxide. Journal of Biological Chemistry, 1999, 274, 9038-9044.	1.6	277
49	Erythropoietin gene regulation depends on heme-dependent oxygen sensing and assembly of interacting transcription factors. Kidney International, 1997, 51, 548-552.	2.6	64
50	Activation of Hypoxia-inducible Transcription Factor Depends Primarily upon Redox-sensitive Stabilization of Its α Subunit. Journal of Biological Chemistry, 1996, 271, 32253-32259.	1.6	1,069
51	From antiangiogenesis to hypoxia: current research and future directions. Cancer Management and Research, 0, , 9.	0.9	0