Hui Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5479625/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective coordination and localized polarization in graphene quantum dots: Detection of fluoride anions using ultra-low-field NMR relaxometry. Chinese Chemical Letters, 2021, 32, 3921-3926.	9.0	5
2	Magnetic graphene quantum dots facilitate closed-tube one-step detection of SARS-CoV-2 with ultra-low field NMR relaxometry. Sensors and Actuators B: Chemical, 2021, 337, 129786.	7.8	40
3	Fluorination Triggers Fluoroalkylation: Nucleophilic Perfluoroâ€ <i>tert</i> â€butylation with 1,1â€Dibromoâ€2,2â€bis(trifluoromethyl)ethylene (DBBF) and CsF. Angewandte Chemie - International Edition, 2021, 60, 27318-27323.	13.8	8
4	Fluorination Triggers Fluoroalkylation: Nucleophilic Perfluoroâ€ŧertâ€butylation with DBBF and CsF. Angewandte Chemie, 2021, 133, 27524.	2.0	3
5	Carbonâ€Based Quantum Dots: Carbonâ€Based Quantum Dots with Solidâ€State Photoluminescent: Mechanism, Implementation, and Application (Small 48/2020). Small, 2020, 16, 2070262.	10.0	3
6	Carbonâ€Based Quantum Dots with Solidâ€State Photoluminescent: Mechanism, Implementation, and Application. Small, 2020, 16, e2004621.	10.0	141
7	Ultra-low noise graphene/copper/nylon fabric for electromagnetic interference shielding in ultra-low field magnetic resonance imaging. Journal of Magnetic Resonance, 2020, 317, 106775.	2.1	12
8	Wide Range SQUID Amplifier With Proportional Feedback for Flux Quanta Counting Scheme. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.7	1
9	Polarizing Graphene Quantum Dots toward Long-Acting Intracellular Reactive Oxygen Species Evaluation and Tumor Detection. ACS Applied Materials & Interfaces, 2020, 12, 10781-10790.	8.0	21
10	A Practical Two-Stage SQUID Readout Circuit Improved With Proportional Feedback Schemes. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-6.	1.7	0
11	Enhancing the magnetic relaxivity of MRI contrast agents via the localized superacid microenvironment of graphene quantum dots. Biomaterials, 2020, 250, 120056.	11.4	48
12	High-Performance Dual-Channel Squid-Based TEM System and Its Application. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-4.	1.7	5
13	Noise Compensation of a Mobile LTS SQUID Planar Gradiometer for Aeromagnetic Detection. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	6
14	Simulation and Measurements of Transient Fields From Conductive Plates of Shielded Room for SQUID-Based Ultralow Field Magnetic Resonance Imaging. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	3
15	Sensor Configuration and Algorithms for Power-Line Interference Suppression in Low Field Nuclear Magnetic Resonance. Sensors, 2019, 19, 3566.	3.8	2
16	Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments. Chinese Physics B, 2018, 27, 020701.	1.4	6
17	Adaptive suppression of power line interference in ultra-low field magnetic resonance imaging in an unshielded environment. Journal of Magnetic Resonance, 2018, 286, 52-59.	2.1	16
18	Ultralowâ€field and spinâ€locking relaxation dispersion in postmortem pig brain. Magnetic Resonance in Medicine, 2017, 78, 2342-2351.	3.0	5

Ηυι Dong

#	Article	IF	CITATIONS
19	Biomagnetic Sensing. Springer Series on Chemical Sensors and Biosensors, 2017, , 449-474.	0.5	0
20	SQUIDs in biomagnetism: a roadmap towards improved healthcare. Superconductor Science and Technology, 2016, 29, 113001.	3.5	67
21	Field Dependence Study of Commercial Gd Chelates With SQUID Detection. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-4.	1.7	3
22	A magnetic nanoparticles relaxation sensor for protein–protein interaction detection at ultra-low magnetic field. Biosensors and Bioelectronics, 2016, 80, 661-665.	10.1	35
23	Multichannel ULF-MRI Study in Magnetic Unshielded Urban Laboratory Environment. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.7	3
24	Effect of magnetic field fluctuation on ultra-low field MRI measurements in the unshielded laboratory environment. Journal of Magnetic Resonance, 2015, 257, 8-14.	2.1	6
25	Dynamical cancellation of pulse-induced transients in a metallic shielded room for ultra-low-field magnetic resonance imaging. Applied Physics Letters, 2015, 106, .	3.3	16
26	Tuned HTS SQUID-Detected Low Field MRI Using a Permanent Magnet for Pre-polarization With Automatic Transportation. IEEE Transactions on Applied Superconductivity, 2013, 23, 1601104-1601104.	1.7	8
27	Ultra-low field magnetic resonance imaging detection with gradient tensor compensation in urban unshielded environment. Applied Physics Letters, 2013, 102, .	3.3	23
28	Time-Domain Frequency Correction Method for Averaging Low-Field NMR Signals Acquired in Urban Laboratory Environment. Chinese Physics Letters, 2012, 29, 107601.	3.3	3
29	Effect of voltage source internal resistance on the SQUID bootstrap circuit. Superconductor Science and Technology, 2012, 25, 015012.	3.5	2
30	Parameter tolerance of the SQUID bootstrap circuit. Superconductor Science and Technology, 2012, 25, 015006.	3.5	7
31	Size and Compositional Effects on Contrast Efficiency of Functionalized Superparamagnetic Nanoparticles at Ultralow and Ultrahigh Magnetic Fields. Journal of Physical Chemistry C, 2012, 116, 17880-17884.	3.1	12
32	Low-field MRI measurements using a tuned HTS SQUID as detector and permanent magnet pre-polarization field. Superconductor Science and Technology, 2012, 25, 075013.	3.5	14
33	Noise Behavior of SQUID Bootstrap Circuit Studied by Numerical Simulation. Physics Procedia, 2012, 36, 127-132.	1.2	2
34	Permanent Magnet Pre-Polarization in Low Field MRI Measurements Using SQUID. Physics Procedia, 2012, 36, 274-279.	1.2	4
35	Magnetic Field Improved ULF-NMR Measurement in an Unshielded Laboratory Using a Low-Tc SQUID. Physics Procedia, 2012, 36, 388-393.	1.2	8
36	Bias Reversal Technique in SQUID Bootstrap Circuit (SBC) Scheme. Physics Procedia, 2012, 36, 441-446.	1.2	0

Ниі Долс

#	Article	IF	CITATIONS
37	A SQUID gradiometer module with wire-wound pickup antenna and integrated voltage feedback circuit. Physica C: Superconductivity and Its Applications, 2012, 480, 10-13.	1.2	9
38	Relaxation Behavior Study of Ultrasmall Superparamagnetic Iron Oxide Nanoparticles at Ultralow and Ultrahigh Magnetic Fields. Journal of Physical Chemistry B, 2011, 115, 14789-14793.	2.6	15
39	Voltage Biased SQUID Bootstrap Circuit: Circuit Model and Numerical Simulation. IEEE Transactions on Applied Superconductivity, 2011, 21, 354-357.	1.7	9
40	Comparison of Noise Performance of the dc SQUID Bootstrap Circuit With That of the Standard Flux Modulation dc SQUID Readout Scheme. IEEE Transactions on Applied Superconductivity, 2011, 21, 501-504.	1.7	10
41	Low Field MRI Detection With Tuned HTS SQUID Magnetometer. IEEE Transactions on Applied Superconductivity, 2011, 21, 509-513.	1.7	12
42	An approach to optimization of the superconducting quantum interference device bootstrap circuit. Superconductor Science and Technology, 2011, 24, 065023.	3.5	10
43	Comparison of different detectors in low field NMR measurements. Journal of Physics: Conference Series, 2010, 234, 042008.	0.4	5
44	A voltage biased superconducting quantum interference device bootstrap circuit. Superconductor Science and Technology, 2010, 23, 065016.	3.5	35
45	Effect of HTS Superconductors on Homogeneity of Measurement Field in Low Field Nuclear Magnetic Resonance Detection. Chinese Physics Letters, 2010, 27, 088502.	3.3	0
46	The Effect of Low Frequency Disturbance to SQUID Based Low Field NMR. IEEE Transactions on Applied Superconductivity, 2009, 19, 827-830.	1.7	3
47	Suppression of ringing in the tuned input circuit of a SQUID detector used in low-field NMR measurements. Superconductor Science and Technology, 2009, 22, 125022.	3.5	21
48	Overview of low-field NMR measurements using HTS rf-SQUIDs. Physica C: Superconductivity and Its Applications, 2009, 469, 1624-1629.	1.2	21
49	Detection of proton NMR signal in the Earth's magnetic field at an urban laboratory environment without shielding. Superconductor Science and Technology, 2008, 21, 115009.	3.5	15