## Y V Nancharaiah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5479459/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Aerobic granular sludge for efficient biotransformation of chalcogen SeIV and TeIV oxyanions:<br>Biological nutrient removal and biogenesis of SeO and TeO nanostructures. Journal of Hazardous<br>Materials, 2022, 422, 126833. | 12.4 | 15        |
| 2  | Enhancing biological nitrogen and phosphorus removal performance in aerobic granular sludge<br>sequencing batch reactors by activated carbon particles. Journal of Environmental Management, 2022,<br>303, 114134.               | 7.8  | 25        |
| 3  | Enhanced biological phosphorus removal in aerobic granular sludge reactors by granular activated carbon dosing. Science of the Total Environment, 2022, 823, 153643.                                                             | 8.0  | 15        |
| 4  | Assessment of alkylimidazolium chloride ionic liquid formulations for cleaning and disinfection of environmental surfaces. American Journal of Infection Control, 2022, 50, 1032-1037.                                           | 2.3  | 4         |
| 5  | Fungal infections: Pathogenesis, antifungals and alternate treatment approaches. Current Research in<br>Microbial Sciences, 2022, 3, 100137.                                                                                     | 2.3  | 16        |
| 6  | Cadmium Selenide Formation Influences the Production and Characteristics of Extracellular<br>Polymeric Substances of Anaerobic Granular Sludge. Applied Biochemistry and Biotechnology, 2021,<br>193, 965-980.                   | 2.9  | 5         |
| 7  | Alkylimidazolium ionic liquids for biofilm control: Experimental studies on controlling multispecies biofilms in natural waters. Journal of Molecular Liquids, 2021, 336, 116859.                                                | 4.9  | 3         |
| 8  | Development of biogenic bimetallic Pd/Fe nanoparticle–impregnated aerobic microbial granules with potential for dye removal. Journal of Environmental Management, 2021, 293, 112789.                                             | 7.8  | 17        |
| 9  | Comparative performance of activated sludge and aerobic granular sludge sequencing batch reactors for removing metalloid SeIV/VI oxyanions. Journal of Hazardous Materials Letters, 2021, 2, 100040.                             | 3.6  | 0         |
| 10 | Biological nutrient removal by halophilic aerobic granular sludge under hypersaline seawater conditions. Bioresource Technology, 2020, 318, 124065.                                                                              | 9.6  | 30        |
| 11 | Making waves: Wastewater surveillance of SARS-CoV-2 for population-based health management.<br>Water Research, 2020, 184, 116181.                                                                                                | 11.3 | 138       |
| 12 | Acid soluble extracellular matrix confers structural stability to marine Bacillus haynesii pellicle<br>biofilms. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111160.                                                      | 5.0  | 5         |
| 13 | Granulation of the autochthonous planktonic bacterial community of seawater for saline<br>wastewater treatment. Environmental Science: Water Research and Technology, 2020, 6, 1902-1916.                                        | 2.4  | 12        |
| 14 | Aerobic granular sludge for high-strength ammonium wastewater treatment: Effect of COD/N ratios,<br>long-term stability and nitrogen removal pathways. Bioresource Technology, 2020, 306, 123150.                                | 9.6  | 34        |
| 15 | Antibiofouling potential of 1-alkyl-3-methylimidazolium ionic liquids: Studies against biofouling<br>barnacle larvae. Journal of Molecular Liquids, 2020, 302, 112497.                                                           | 4.9  | 14        |
| 16 | Role of bacterial biofilms and their EPS on settlement of barnacle (Amphibalanus reticulatus) larvae.<br>International Biodeterioration and Biodegradation, 2020, 150, 104958.                                                   | 3.9  | 20        |
| 17 | Alkylimidazolium Ionic Liquids as Antifungal Alternatives: Antibiofilm Activity Against Candida albicans and Underlying Mechanism of Action. Frontiers in Microbiology, 2020, 11, 730.                                           | 3.5  | 29        |
| 18 | Development and performance of halophilic microalgae-colonized aerobic granular sludge for treating seawater-based wastewater. Bioresource Technology Reports, 2020, 11, 100432.                                                 | 2.7  | 12        |

Y V NANCHARAIAH

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Cathodic selenium recovery in bioelectrochemical system: Regulatory influence on anodic electrogenic activity. Journal of Hazardous Materials, 2020, 399, 122843.                                                                       | 12.4 | 15        |
| 20 | In situ and ex situ bioremediation of seleniferous soils from northwestern India. Journal of Soils and Sediments, 2019, 19, 762-773.                                                                                                    | 3.0  | 16        |
| 21 | Aerobic granular sludge process: a fast growing biological treatment for sustainable wastewater treatment. Current Opinion in Environmental Science and Health, 2019, 12, 57-65.                                                        | 4.1  | 96        |
| 22 | Microbial transformation of Se oxyanions in cultures of Delftia lacustris grown under aerobic conditions. Journal of Microbiology, 2019, 57, 362-371.                                                                                   | 2.8  | 7         |
| 23 | Simultaneous removal of sulfate and selenate from wastewater by process integration of an ion exchange column and upflow anaerobic sludge blanket bioreactor. Separation Science and Technology, 2019, 54, 1387-1399.                   | 2.5  | 10        |
| 24 | Removal and Recovery of Metals and Nutrients From Wastewater Using Bioelectrochemical Systems. , 2019, , 693-720.                                                                                                                       |      | 7         |
| 25 | Aerobic Granular Sludge:The Future of Wastewater Treatment. Current Science, 2019, 117, 395.                                                                                                                                            | 0.8  | 49        |
| 26 | Formation of Se(0), Te(0), and Se(0)–Te(0) nanostructures during simultaneous bioreduction of selenite and tellurite in a UASB reactor. Applied Microbiology and Biotechnology, 2018, 102, 2899-2911.                                   | 3.6  | 31        |
| 27 | Biotechnology in the management and resource recovery from metal bearing solid wastes: Recent advances. Journal of Environmental Management, 2018, 211, 138-153.                                                                        | 7.8  | 84        |
| 28 | Selenate removal in biofilm systems: effect of nitrate and sulfate on selenium removal efficiency,<br>biofilm structure and microbial community. Journal of Chemical Technology and Biotechnology, 2018,<br>93, 2380-2389.              | 3.2  | 20        |
| 29 | Environmental impact and bioremediation of seleniferous soils and sediments. Critical Reviews in<br>Biotechnology, 2018, 38, 941-956.                                                                                                   | 9.0  | 47        |
| 30 | Comparative performance of anaerobic attached biofilm and granular sludge reactors for the<br>treatment of model mine drainage wastewater containing selenate, sulfate and nickel. Chemical<br>Engineering Journal, 2018, 345, 545-555. | 12.7 | 43        |
| 31 | Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications.<br>Bioresource Technology, 2018, 247, 1128-1143.                                                                                       | 9.6  | 374       |
| 32 | Textile dye biodecolourization and ammonium removal over nitrite in aerobic granular sludge sequencing batch reactors. Journal of Hazardous Materials, 2018, 342, 536-543.                                                              | 12.4 | 91        |
| 33 | Selenite reduction and ammoniacal nitrogen removal in an aerobic granular sludge sequencing batch reactor. Water Research, 2018, 131, 131-141.                                                                                          | 11.3 | 66        |
| 34 | Sustainable bioreduction of toxic levels of chromate in a denitrifying granular sludge reactor.<br>Environmental Science and Pollution Research, 2018, 25, 1969-1979.                                                                   | 5.3  | 21        |
| 35 | Optimization of Soil Washing to Reduce the Selenium Levels of Seleniferous Soil from Punjab,<br>Northwestern India. Journal of Environmental Quality, 2018, 47, 1530-1537.                                                              | 2.0  | 6         |
| 36 | Denitrification Kinetics of High‧trength Nitrate in Granular Sludge Reactors. Clean - Soil, Air, Water, 2018, 46, 1800239.                                                                                                              | 1.1  | 4         |

Y V NANCHARAIAH

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Phytoremediation of seleniferous soil leachate using the aquatic plants Lemna minor and Egeria densa. Ecological Engineering, 2018, 120, 321-328.                                                          | 3.6  | 21        |
| 38 | Biological treatment of selenium-laden wastewater containing nitrate and sulfate in an upflow anaerobic sludge bed reactor at pH 5.0. Chemosphere, 2018, 211, 684-693.                                     | 8.2  | 29        |
| 39 | Amberlite IRA-900 Ion Exchange Resin for the Sorption of Selenate and Sulfate: Equilibrium, Kinetic, and Regeneration Studies. Journal of Environmental Engineering, ASCE, 2018, 144, 04018110.            | 1.4  | 11        |
| 40 | Effect of elevated nitrate and sulfate concentrations on selenate removal by mesophilic anaerobic<br>granular sludge bed reactors. Environmental Science: Water Research and Technology, 2018, 4, 303-314. | 2.4  | 15        |
| 41 | Chlorination induced damage and recovery in marine diatoms: Assay by SYTOX® Green staining. Marine<br>Pollution Bulletin, 2017, 124, 819-826.                                                              | 5.0  | 9         |
| 42 | Biological removal of selenate and ammonium by activated sludge in a sequencing batch reactor.<br>Bioresource Technology, 2017, 229, 11-19.                                                                | 9.6  | 38        |
| 43 | 2,4-Dinitrotoluene removal in aerobic granular biomass sequencing batch reactors. International<br>Biodeterioration and Biodegradation, 2017, 119, 56-65.                                                  | 3.9  | 26        |
| 44 | Biosynthesis of CdSe nanoparticles by anaerobic granular sludge. Environmental Science: Nano, 2017,<br>4, 824-833.                                                                                         | 4.3  | 23        |
| 45 | Long alkyl-chain imidazolium ionic liquids: Antibiofilm activity against phototrophic biofilms.<br>Colloids and Surfaces B: Biointerfaces, 2017, 155, 487-496.                                             | 5.0  | 43        |
| 46 | A comparison of fate and toxicity of selenite, biogenically, and chemically synthesized selenium nanoparticles to zebrafish ( <i>Danio rerio</i> ) embryogenesis. Nanotoxicology, 2017, 11, 87-97.         | 3.0  | 61        |
| 47 | Continuous removal and recovery of tellurium in an upflow anaerobic granular sludge bed reactor.<br>Journal of Hazardous Materials, 2017, 327, 79-88.                                                      | 12.4 | 50        |
| 48 | Denitrification of high strength nitrate bearing acidic waters in granular sludge sequencing batch reactors. International Biodeterioration and Biodegradation, 2017, 119, 28-36.                          | 3.9  | 18        |
| 49 | Bioreduction of [Co(III)â€EDTA] <sup>â^'</sup> by Denitrifying Granular Sludge Biofilms. Chemical<br>Engineering and Technology, 2016, 39, 1669-1675.                                                      | 1.5  | 5         |
| 50 | Selenium: environmental significance, pollution, and biological treatment technologies.<br>Biotechnology Advances, 2016, 34, 886-907.                                                                      | 11.7 | 338       |
| 51 | Metal chalcogenide quantum dots: biotechnological synthesis and applications. RSC Advances, 2016, 6, 41477-41495.                                                                                          | 3.6  | 94        |
| 52 | Effect of C/N ratio on denitrification of high-strength nitrate wastewater in anoxic granular sludge sequencing batch reactors. Ecological Engineering, 2016, 91, 441-448.                                 | 3.6  | 93        |
| 53 | Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems.<br>Bioresource Technology, 2016, 215, 173-185.                                                              | 9.6  | 202       |
| 54 | Effect of heavy metal co-contaminants on selenite bioreduction by anaerobic granular sludge.<br>Bioresource Technology, 2016, 206, 1-8.                                                                    | 9.6  | 56        |

Y V NANCHARAIAH

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Biological and Bioelectrochemical Recovery of Critical and Scarce Metals. Trends in Biotechnology, 2016, 34, 137-155.                                                                  | 9.3  | 234       |
| 56 | In situ and ex situ bioremediation of radionuclide-contaminated soils at nuclear and norm sites. , 2015, , 185-236.                                                                    |      | 20        |
| 57 | Ecology and Biotechnology of Selenium-Respiring Bacteria. Microbiology and Molecular Biology<br>Reviews, 2015, 79, 61-80.                                                              | 6.6  | 319       |
| 58 | Metals removal and recovery in bioelectrochemical systems: A review. Bioresource Technology, 2015, 195, 102-114.                                                                       | 9.6  | 318       |
| 59 | Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria. Chemosphere, 2015, 128, 178-183.                                                                      | 8.2  | 22        |
| 60 | Selenium biomineralization for biotechnological applications. Trends in Biotechnology, 2015, 33, 323-330.                                                                              | 9.3  | 214       |
| 61 | Denitrification accelerates granular sludge formation in sequencing batch reactors. Bioresource<br>Technology, 2015, 196, 28-34.                                                       | 9.6  | 27        |
| 62 | Biodegradation of tributyl phosphate, an organosphate triester, by aerobic granular biofilms. Journal<br>of Hazardous Materials, 2015, 283, 705-711.                                   | 12.4 | 43        |
| 63 | Biogenic nanopalladium production by self-immobilized granular biomass: Application for contaminant remediation. Water Research, 2014, 65, 395-401.                                    | 11.3 | 46        |
| 64 | Biodegradation of dibutyl phosphite by Sphingobium sp. AMGD5 isolated from aerobic granular biomass. International Biodeterioration and Biodegradation, 2014, 91, 60-65.               | 3.9  | 12        |
| 65 | Anti-biofilm potential of a glycolipid surfactant produced by a tropical marine strain of <i>Serratia marcescens</i> . Biofouling, 2011, 27, 645-654.                                  | 2.2  | 137       |
| 66 | Immobilization of Cr(VI) and Its Reduction to Cr(III) Phosphate by Granular Biofilms Comprising a<br>Mixture of Microbes. Applied and Environmental Microbiology, 2010, 76, 2433-2438. | 3.1  | 86        |
| 67 | Disruption of fungal and bacterial biofilms by lauroyl glucose. Letters in Applied Microbiology, 2008, 47, 374-379.                                                                    | 2.2  | 62        |
| 68 | Formation of aerobic granules in the presence of a synthetic chelating agent. Environmental Pollution, 2008, 153, 37-43.                                                               | 7.5  | 10        |
| 69 | Bioaugmentation of aerobic microbial granules with Pseudomonas putida carrying TOL plasmid.<br>Chemosphere, 2008, 71, 30-35.                                                           | 8.2  | 61        |
| 70 | Single Cell Level Microalgal Ecotoxicity Assessment by Confocal Microscopy and Digital Image<br>Analysis. Environmental Science & Technology, 2007, 41, 2617-2621.                     | 10.0 | 57        |
| 71 | Biodegradation of nitrilotriacetic acid (NTA) and ferric–NTA complex by aerobic microbial granules.<br>Water Research, 2006, 40, 1539-1546.                                            | 11.3 | 73        |
| 72 | Biocidal efficacy of monochloramine against biofilm bacteria. Biofouling, 1998, 12, 321-332.                                                                                           | 2.2  | 20        |