Suzanne Kolb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5479396/publications.pdf

Version: 2024-02-01

147801 155660 3,842 59 31 55 citations h-index g-index papers 61 61 61 6392 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Genetic factors associated with prostate cancer conversion from active surveillance to treatment. Human Genetics and Genomics Advances, 2022, 3, 100070.	1.7	10
2	Discovery and fine-mapping of height loci via high-density imputation of GWASs in individuals of African ancestry. American Journal of Human Genetics, 2021, 108, 564-582.	6.2	18
3	17-Gene Genomic Prostate Score Test Results in the Canary Prostate Active Surveillance Study (PASS) Cohort. Journal of Clinical Oncology, 2020, 38, 1549-1557.	1.6	48
4	Copy number alterations are associated with metastatic-lethal progression in prostate cancer. Prostate Cancer and Prostatic Diseases, 2020, 23, 494-506.	3.9	12
5	A fourâ€gene transcript score to predict metastaticâ€lethal progression in men treated for localized prostate cancer: Development and validation studies. Prostate, 2019, 79, 1589-1596.	2.3	8
6	Vigorous Physical Activity Is Associated with Lower Risk of Metastatic–Lethal Progression in Prostate Cancer and Hypomethylation in the <i>CRACR2A</i> Gene. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 258-264.	2.5	20
7	DNA methylation profiles in African American prostate cancer patients in relation to disease progression. Genomics, 2019, 111, 10-16.	2.9	30
8	A fiveâ€CpG DNA methylation score to predict metastaticâ€lethal outcomes in men treated with radical prostatectomy for localized prostate cancer. Prostate, 2018, 78, 1084-1091.	2.3	16
9	Epigenome-Wide Tumor DNA Methylation Profiling Identifies Novel Prognostic Biomarkers of Metastatic-Lethal Progression in Men Diagnosed with Clinically Localized Prostate Cancer. Clinical Cancer Research, 2017, 23, 311-319.	7.0	65
10	Gene expression panel predicts metastaticâ€lethal prostate cancer outcomes in men diagnosed with clinically localized prostate cancer. Molecular Oncology, 2017, 11, 140-150.	4.6	24
11	Gene expression signature of Gleason score is associated with prostate cancer outcomes in a radical prostatectomy cohort. Oncotarget, 2017, 8, 43035-43047.	1.8	35
12	Whole exome sequencing in 75 high-risk families with validation and replication in independent case-control studies identifies <i>TANGO2</i> , <i>OR5H14</i> , and <i>CHAD</i> as new prostate cancer susceptibility genes. Oncotarget, 2017, 8, 1495-1507.	1.8	11
13	Quantitative comparison and reproducibility of pathologist scoring and digital image analysis of estrogen receptor \hat{l}^2 2 immunohistochemistry in prostate cancer. Diagnostic Pathology, 2016, 11, 63.	2.0	34
14	<i>Trichomonas vaginalis</i> infection and risk of advanced prostate cancer. Prostate, 2016, 76, 620-623.	2.3	22
15	A Meta-analysis of Multiple Myeloma Risk Regions in African and European Ancestry Populations Identifies Putatively Functional Loci. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1609-1618.	2.5	18
16	Prostate tumor DNA methylation is associated with cigarette smoking and adverse prostate cancer outcomes. Cancer, 2016, 122, 2168-2177.	4.1	47
17	Prostate Cancer Expression Profiles of Cytoplasmic $\mathrm{ER}\hat{l}^21$ and Nuclear $\mathrm{ER}\hat{l}^22$ are Associated with Poor Outcomes following Radical Prostatectomy. Journal of Urology, 2016, 195, 1760-1766.	0.4	12
18	PD47-03 EXPRESSION OF CYTOPLASMIC ERÎ ² 1 AND NUCLEAR ERÎ ² 2 IS ASSOCIATED WITH POOR OUTCOMES FOLLOWING RADICAL PROSTATECTOMY FOR LOCALIZED PROSTATE CANCER. Journal of Urology, 2015, 193, .	0.4	0

#	Article	IF	Citations
19	Expression of cell cycle-regulated genes and prostate cancer prognosis in a population-based cohort. Prostate, 2015, 75, 1354-1362.	2.3	16
20	Methodological Considerations in Estimation of Phenotype Heritability Using Genome-Wide SNP Data, Illustrated by an Analysis of the Heritability of Height in a Large Sample of African Ancestry Adults. PLoS ONE, 2015, 10, e0131106.	2.5	2
21	Generalizability of established prostate cancer risk variants in men of <scp>A</scp> frican ancestry. International Journal of Cancer, 2015, 136, 1210-1217.	5.1	62
22	Integration of multiethnic fine-mapping and genomic annotation to prioritize candidate functional SNPs at prostate cancer susceptibility regions. Human Molecular Genetics, 2015, 24, 5603-5618.	2.9	50
23	Two susceptibility loci identified for prostate cancer aggressiveness. Nature Communications, 2015, 6, 6889.	12.8	88
24	Validation Study of Genes with Hypermethylated Promoter Regions Associated with Prostate Cancer Recurrence. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 1331-1339.	2.5	34
25	A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nature Genetics, 2014, 46, 1103-1109.	21.4	408
26	Abstract 5066: Generalizability of established prostate cancer risk variants in men of African ancestry. , $2014, , .$		0
27	Association of variants in estrogenâ€related pathway genes with prostate cancer risk. Prostate, 2013, 73, 1-10.	2.3	28
28	Investigation of the Relationship Between Prostate Cancer and <i>MSMB </i> li>and <i>NCOA4 </i> li>Genetic Variants and Protein Expression. Human Mutation, 2013, 34, 149-156.	2.5	26
29	Circulating levels of 25-hydroxyvitamin D and prostate cancer prognosis. Cancer Epidemiology, 2013, 37, 666-670.	1.9	30
30	Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nature Genetics, 2013, 45, 385-391.	21.4	492
31	Statin Use in Relation to Prostate Cancer Outcomes in a Population-based Patient Cohort Study. Prostate, 2013, 73, 1214-1222.	2.3	57
32	A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Human Molecular Genetics, 2013, 22, 408-415.	2.9	118
33	<i>HOXB13</i> mutations in a populationâ€based, case–control study of prostate cancer. Prostate, 2013, 73, 634-641.	2.3	44
34	Germline Missense Variants in the <i>BTNL2</i> Gene Are Associated with Prostate Cancer Susceptibility. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 1520-1528.	2.5	35
35	Androgen metabolism and JAK/STAT pathway genes and prostate cancer risk. Cancer Epidemiology, 2012, 36, 347-353.	1.9	34
36	Genome-wide association study of prostate cancer in men of African ancestry identifies a susceptibility locus at 17q21. Nature Genetics, 2011, 43, 570-573.	21.4	198

#	Article	IF	CITATIONS
37	Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study. Nature Genetics, 2011, 43, 785-791.	21.4	265
38	Genetic Polymorphisms in Inflammation Pathway Genes and Prostate Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 923-933.	2.5	54
39	Genome-wide Association Study Identifies a Genetic Variant Associated with Risk for More Aggressive Prostate Cancer. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 1196-1203.	2.5	48
40	Genetic Variants in the <i>LEPR</i> , <i>CRY1</i> , <i>RNASEL</i> , <i>IL4</i> , and <iarvcf< i=""> Genes Are Prognostic Markers of Prostate Cancer-Specific Mortality. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 1928-1936.</iarvcf<>	2.5	68
41	Characterizing Genetic Risk at Known Prostate Cancer Susceptibility Loci in African Americans. PLoS Genetics, 2011, 7, e1001387.	3.5	117
42	<i>CYP17</i> polymorphisms and prostate cancer outcomes. Prostate, 2010, 70, 1094-1101.	2.3	25
43	Prostate Cancer Specific Mortality and Gleason 7 Disease Differences in Prostate Cancer Outcomes Between Cases With Gleason 4 + 3 and Gleason 3 + 4 Tumors in a Population Based Cohort. Journal of Urology, 2009, 182, 2702-2707.	0.4	133
44	CYP17 POLYMORPHISMS AND PROSTATE CANCER OUTCOMES. Journal of Urology, 2009, 181, 777-777.	0.4	0
45	Identification and characterization of novel SNPs in CHEK2 in Ashkenazi Jewish men with prostate cancer. Cancer Letters, 2008, 270, 173-180.	7.2	19
46	Pooled genome linkage scan of aggressive prostate cancer: results from the International Consortium for Prostate Cancer Genetics. Human Genetics, 2006, 120, 471-485.	3.8	57
47	Prostate cancer and genetic susceptibility: A genome scan incorporating disease aggressiveness. Prostate, 2006, 66, 317-325.	2.3	45
48	A Combined Genomewide Linkage Scan of 1,233 Families for Prostate Cancer–Susceptibility Genes Conducted by the International Consortium for Prostate Cancer Genetics. American Journal of Human Genetics, 2005, 77, 219-229.	6.2	138
49	Identification of a prostate cancer susceptibility locus on chromosome 7q11–21 in Jewish families. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1939-1944.	7.1	23
50	Oligogenic segregation analysis of hereditary prostate cancer pedigrees: Evidence for multiple loci affecting age at onset. International Journal of Cancer, 2003, 105, 630-635.	5.1	34
51	Genomic scan of 254 hereditary prostate cancer families. Prostate, 2003, 57, 309-319.	2.3	59
52	A polymorphism in the CYP17 gene and risk of prostate cancer. Cancer Epidemiology Biomarkers and Prevention, 2002, 11, 243-7.	2.5	28
53	Genetic Linkage Analysis of Prostate Cancer Families to Xq27–28. Human Heredity, 2001, 51, 107-113.	0.8	46
54	Germline mutations in the p73 gene do not predispose to familial prostate-brain cancer. Prostate, 2001, 48, 292-296.	2.3	29

SUZANNE KOLB

#	Article	IF	CITATIONS
55	Linkage analysis of 150 high-risk prostate cancer families at 1q24-25., 2000, 18, 251-275.		43
56	A Genomic Scan of Families with Prostate Cancer Identifies Multiple Regions of Interest. American Journal of Human Genetics, 2000, 67, 100-109.	6.2	88
57	Confirmation of Prostate Cancer Susceptibility Genes Using High-Risk Families. Journal of the National Cancer Institute Monographs, 1999, 1999, 81-87.	2.1	9
58	Evidence for a Rare Prostate Cancer–Susceptibility Locus at Chromosome 1p36. American Journal of Human Genetics, 1999, 64, 776-787.	6.2	292
59	Analysis of Chromosome 1q42.2-43 in 152 Families with High Risk of Prostate Cancer. American Journal of Human Genetics, 1999, 64, 1087-1095.	6.2	70