List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5479369/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-molecule imaging of IQGAP1 regulating actin filament dynamics. Molecular Biology of the Cell, 2022, 33, mbcE21040211.	2.1	13
2	Extensile to contractile transition in active microtubule–actin composites generates layered asters with programmable lifetimes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	19
3	Quantitative Analysis of Actin Cable Length in Yeast. Bio-protocol, 2022, 12, .	0.4	4
4	Single-molecule analysis of actin filament debranching by cofilin and GMF. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	7
5	Bil2 Is a Novel Inhibitor of the Yeast Formin Bnr1 Required for Proper Actin Cable Organization and Polarized Secretion. Frontiers in Cell and Developmental Biology, 2021, 9, 634587.	3.7	1
6	Scaling of subcellular actin structures with cell length through decelerated growth. ELife, 2021, 10, .	6.0	10
7	Twinfilin bypasses assembly conditions and actin filament aging to drive barbed end depolymerization. Journal of Cell Biology, 2021, 220, .	5.2	24
8	EB1 Directly Regulates APC-Mediated Actin Nucleation. Current Biology, 2020, 30, 4763-4772.e8.	3.9	22
9	DAAM2 Variants Cause Nephrotic Syndrome via Actin Dysregulation. American Journal of Human Genetics, 2020, 107, 1113-1128.	6.2	12
10	Cofilin Loss in Drosophila Muscles Contributes to Muscle Weakness through Defective Sarcomerogenesis during Muscle Growth. Cell Reports, 2020, 32, 107893.	6.4	17
11	WAVE1 and WAVE2 have distinct and overlapping roles in controlling actin assembly at the leading edge. Molecular Biology of the Cell, 2020, 31, 2168-2178.	2.1	23
12	Cell–substrate adhesion drives Scar/WAVE activation and phosphorylation by a Ste20-family kinase, which controls pseudopod lifetime. PLoS Biology, 2020, 18, e3000774.	5.6	22
13	A septin-Hof1 scaffold at the yeast bud neck binds and organizes actin cables. Molecular Biology of the Cell, 2020, 31, 1988-2001.	2.1	16
14	Genetically inspired in vitro reconstitution ofSaccharomyces cerevisiaeactin cables from seven purified proteins. Molecular Biology of the Cell, 2020, 31, 335-347.	2.1	10
15	Centering and symmetry breaking in confined contracting actomyosin networks. ELife, 2020, 9, .	6.0	29
16	Title is missing!. , 2020, 18, e3000774.		0
17	Title is missing!. , 2020, 18, e3000774.		0

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 18, e3000774.		0
20	Title is missing!. , 2020, 18, e3000774.		0
21	Title is missing!. , 2020, 18, e3000774.		0
22	The role of APC-mediated actin assembly in microtubule capture and focal adhesion turnover. Journal of Cell Biology, 2019, 218, 3415-3435.	5.2	38
23	Synergy between Cyclase-associated protein and Cofilin accelerates actin filament depolymerization by two orders of magnitude. Nature Communications, 2019, 10, 5319.	12.8	60
24	Tropomyosin isoforms differentially tune actin filament length and disassembly. Molecular Biology of the Cell, 2019, 30, 671-679.	2.1	35
25	Scaling behaviour in steady-state contracting actomyosin networks. Nature Physics, 2019, 15, 509-516.	16.7	43
26	A Flow Cytometry-Based Phenotypic Screen To Identify Novel Endocytic Factors in <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2018, 8, 1497-1512.	1.8	5
27	Rapid production of pure recombinant actin isoforms in <i>Pichia pastoris</i> . Journal of Cell Science, 2018, 131, .	2.0	31
28	GMF as an Actin Network Remodeling Factor. Trends in Cell Biology, 2018, 28, 749-760.	7.9	28
29	Structural basis of actin monomer re-charging by cyclase-associated protein. Nature Communications, 2018, 9, 1892.	12.8	60
30	Species-Specific Functions of Twinfilin in Actin Filament Depolymerization. Journal of Molecular Biology, 2018, 430, 3323-3336.	4.2	33
31	Abp1 promotes Arp2/3 complex-dependent actin nucleation and stabilizes branch junctions by antagonizing GMF. Nature Communications, 2018, 9, 2895.	12.8	19
32	Integrated control of formin-mediated actin assembly by a stationary inhibitor and a mobile activator. Journal of Cell Biology, 2018, 217, 3512-3530.	5.2	20
33	A novel mode of capping protein-regulation by twinfilin. ELife, 2018, 7, .	6.0	38
34	Structural Basis of Arp2/3 Complex Inhibition by GMF, Coronin, and Arpin. Journal of Molecular Biology, 2017, 429, 237-248.	4.2	50
35	Profilin Directly Promotes Microtubule Growth through Residues Mutated in Amyotrophic Lateral Sclerosis. Current Biology, 2017, 27, 3535-3543.e4.	3.9	66
36	Adenomatous polyposis coli nucleates actin assembly to drive cell migration and microtubule-induced focal adhesion turnover. Journal of Cell Biology, 2017, 216, 2859-2875.	5.2	60

#	Article	IF	CITATIONS
37	Accelerated actin filament polymerization from microtubule plus ends. Science, 2016, 352, 1004-1009.	12.6	172
38	Tropomyosin and Profilin Cooperate to Promote Formin-Mediated Actin Nucleation and Drive Yeast Actin Cable Assembly. Current Biology, 2016, 26, 3230-3237.	3.9	23
39	Design Principles of Length Control of Cytoskeletal Structures. Annual Review of Biophysics, 2016, 45, 85-116.	10.0	54
40	TIRF microscopy analysis of human Cof1, Cof2, and ADF effects on actin filament severing and turnover. Journal of Molecular Biology, 2016, 428, 1604-1616.	4.2	40
41	Common formin-regulating sequences in Smy1 and Bud14 are required for the control of actin cable assembly in vivo. Molecular Biology of the Cell, 2016, 27, 828-837.	2.1	23
42	Structural basis for mutation-induced destabilization of profilin 1 in ALS. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7984-7989.	7.1	71
43	Actin and Endocytosis in Budding Yeast. Genetics, 2015, 199, 315-358.	2.9	203
44	Combinatorial genetic analysis of a network of actin disassemblyâ€promoting factors. Cytoskeleton, 2015, 72, 349-361.	2.0	18
45	Single-molecule visualization of a formin-capping protein â€~decision complex' at the actin filament barbed end. Nature Communications, 2015, 6, 8707.	12.8	87
46	A novel role for WAVE1 in controlling actin network growth rate and architecture. Molecular Biology of the Cell, 2015, 26, 495-505.	2.1	20
47	Global Resource Distribution: Allocation of Actin Building Blocks by Profilin. Developmental Cell, 2015, 32, 5-6.	7.0	15
48	Structure of a Bud6/Actin Complex Reveals a Novel WH2-like Actin Monomer Recruitment Motif. Structure, 2015, 23, 1492-1499.	3.3	16
49	Coronin Enhances Actin Filament Severing by Recruiting Cofilin to Filament Sides and Altering F-Actin Conformation. Journal of Molecular Biology, 2015, 427, 3137-3147.	4.2	53
50	High-speed depolymerization at actin filament ends jointly catalysed by Twinfilin and Srv2/CAP. Nature Cell Biology, 2015, 17, 1504-1511.	10.3	105
51	Single-molecule imaging of a three-component ordered actin disassembly mechanism. Nature Communications, 2015, 6, 7202.	12.8	97
52	Antenna Mechanism of Length Control of Actin Cables. PLoS Computational Biology, 2015, 11, e1004160.	3.2	27
53	Essential and nonredundant roles for Diaphanous formins in cortical microtubule capture and directed cell migration. Molecular Biology of the Cell, 2014, 25, 658-668.	2.1	39
54	Autonomous and <i>in trans</i> functions for the two halves of Srv2/CAP in promoting actin turnover. Cytoskeleton, 2014, 71, 351-360.	2.0	18

#	Article	IF	CITATIONS
55	Structure and Mechanism of Mouse Cyclase-associated Protein (CAP1) in Regulating Actin Dynamics. Journal of Biological Chemistry, 2014, 289, 30732-30742.	3.4	54
56	Critical roles for multiple formins during cardiac myofibril development and repair. Molecular Biology of the Cell, 2014, 25, 811-827.	2.1	48
57	Single-Molecule Studies of Actin Assembly and Disassembly Factors. Methods in Enzymology, 2014, 540, 95-117.	1.0	18
58	GMF Promotes Leading-Edge Dynamics and Collective Cell Migration InÂVivo. Current Biology, 2014, 24, 2533-2540.	3.9	38
59	Saccharomyces cerevisiae Kelch Proteins and Bud14 Protein Form a Stable 520-kDa Formin Regulatory Complex That Controls Actin Cable Assembly and Cell Morphogenesis. Journal of Biological Chemistry, 2014, 289, 18290-18301.	3.4	23
60	The F-BAR protein Hof1 tunes formin activity to sculpt actin cables during polarized growth. Molecular Biology of the Cell, 2014, 25, 1730-1743.	2.1	30
61	The Formin Daam1 and Fascin Directly Collaborate to Promote Filopodia Formation. Current Biology, 2013, 23, 1373-1379.	3.9	109
62	Formins at a glance. Journal of Cell Science, 2013, 126, 1-7.	2.0	276
63	GMF Severs Actin-Arp2/3 Complex Branch Junctions by a Cofilin-like Mechanism. Current Biology, 2013, 23, 1037-1045.	3.9	66
64	Drosophila Homologues of Adenomatous Polyposis Coli (APC) and the Formin Diaphanous Collaborate by a Conserved Mechanism to Stimulate Actin Filament Assembly. Journal of Biological Chemistry, 2013, 288, 13897-13905.	3.4	16
65	Srv2/cyclase-associated protein forms hexameric <i>shurikens</i> that directly catalyze actin filament severing by cofilin. Molecular Biology of the Cell, 2013, 24, 31-41.	2.1	90
66	Ligand-induced activation of a formin–NPF pair leads to collaborative actin nucleation. Journal of Cell Biology, 2013, 201, 595-611.	5.2	35
67	Pathway of actin filament branch formation by Arp2/3 complex revealed by single-molecule imaging. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1285-1290.	7.1	94
68	Three-color single molecule imaging shows WASP detachment from Arp2/3 complex triggers actin filament branch formation. ELife, 2013, 2, e01008.	6.0	101
69	Structure of the formin-interaction domain of the actin nucleation-promoting factor Bud6. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3424-33.	7.1	29
70	Structure and activity of fullâ€length formin mDia1. Cytoskeleton, 2012, 69, 393-405.	2.0	55
71	Rocket Launcher Mechanism of Collaborative Actin Assembly Defined by Single-Molecule Imaging. Science, 2012, 336, 1164-1168.	12.6	146
72	The Myosin Passenger Protein Smy1 Controls Actin Cable Structure and Dynamics by Acting as a Formin Damper. Developmental Cell, 2011, 21, 217-230.	7.0	57

#	Article	IF	CITATIONS
73	The Formin DAD Domain Plays Dual Roles in Autoinhibition and Actin Nucleation. Current Biology, 2011, 21, 384-390.	3.9	101
74	Ceaseâ€fire at the leading edge: New perspectives on actin filament branching, debranching, and crossâ€linking. Cytoskeleton, 2011, 68, 596-602.	2.0	32
75	Cofilin cooperates with fascin to disassemble filopodial actin filaments. Journal of Cell Science, 2011, 124, 3305-3318.	2.0	146
76	Mechanism and cellular function of Bud6 as an actin nucleation–promoting factor. Molecular Biology of the Cell, 2011, 22, 4016-4028.	2.1	58
77	GMF Is a Cofilin Homolog that Binds Arp2/3 Complex to Stimulate Filament Debranching and Inhibit Actin Nucleation. Current Biology, 2010, 20, 861-867.	3.9	99
78	A central role for the WH2 domain of Srv2/CAP in recharging actin monomers to drive actin turnover in vitro and in vivo. Cytoskeleton, 2010, 67, 120-133.	2.0	50
79	Unleashing formins to remodel the actin and microtubule cytoskeletons. Nature Reviews Molecular Cell Biology, 2010, 11, 62-74.	37.0	449
80	Functional Surfaces on the Actin-binding Protein Coronin Revealed by Systematic Mutagenesis. Journal of Biological Chemistry, 2010, 285, 34899-34908.	3.4	26
81	Adenomatous polyposis coli protein nucleates actin assembly and synergizes with the formin mDia1. Journal of Cell Biology, 2010, 189, 1087-1096.	5.2	154
82	Reconstitution and Dissection of the 600-kDa Srv2/CAP Complex. Journal of Biological Chemistry, 2009, 284, 10923-10934.	3.4	61
83	The F-BAR Protein Syp1 Negatively Regulates WASp-Arp2/3 Complex Activity during Endocytic Patch Formation. Current Biology, 2009, 19, 1979-1987.	3.9	64
84	Actin nucleation and elongation factors: mechanisms and interplay. Current Opinion in Cell Biology, 2009, 21, 28-37.	5.4	270
85	Displacement of Formins from Growing Barbed Ends by Bud14 Is Critical for Actin Cable Architecture and Function. Developmental Cell, 2009, 16, 292-302.	7.0	69
86	Coronin Switches Roles in Actin Disassembly Depending on the Nucleotide State of Actin. Molecular Cell, 2009, 34, 364-374.	9.7	124
87	WASp Identity Theft by a Bacterial Effector. Developmental Cell, 2008, 15, 333-334.	7.0	1
88	Regulation and Targeting of the Fission Yeast Formin cdc12p in Cytokinesis. Molecular Biology of the Cell, 2008, 19, 2208-2219.	2.1	72
89	The formin mDia2 stabilizes microtubules independently of its actin nucleation activity. Journal of Cell Biology, 2008, 181, 523-536.	5.2	209
90	Regulated Binding of Adenomatous Polyposis Coli Protein to Actin. Journal of Biological Chemistry, 2007, 282, 12661-12668.	3.4	91

#	Article	IF	CITATIONS
91	Mechanism and biological role of profilin-Srv2/CAP interaction. Journal of Cell Science, 2007, 120, 1225-1234.	2.0	61
92	Structure of the FH2 Domain of Daam1: Implications for Formin Regulation of Actin Assembly. Journal of Molecular Biology, 2007, 369, 1258-1269.	4.2	84
93	Mechanism and Function of Formins in the Control of Actin Assembly. Annual Review of Biochemistry, 2007, 76, 593-627.	11.1	706
94	Formin Proteins: Purification and Measurement of Effects on Actin Assembly. Methods in Enzymology, 2006, 406, 215-234.	1.0	61
95	Aip1 and Cofilin Promote Rapid Turnover of Yeast Actin Patches and Cables: A Coordinated Mechanism for Severing and Capping Filaments. Molecular Biology of the Cell, 2006, 17, 2855-2868.	2.1	107
96	The Yeast Actin Cytoskeleton: from Cellular Function to Biochemical Mechanism. Microbiology and Molecular Biology Reviews, 2006, 70, 605-645.	6.6	329
97	Conformational changes in the Arp2/3 complex leading to actin nucleation. Nature Structural and Molecular Biology, 2005, 12, 26-31.	8.2	159
98	Dissection of Arp2/3 Complex Actin Nucleation Mechanism and Distinct Roles for Its Nucleation-Promoting Factors in Saccharomyces cerevisiae. Genetics, 2005, 171, 35-47.	2.9	38
99	Differential Activities and Regulation of Saccharomyces cerevisiae Formin Proteins Bni1 and Bnr1 by Bud6. Journal of Biological Chemistry, 2005, 280, 28023-28033.	3.4	134
100	Structural and Functional Dissection of the Abp1 ADFH Actin-binding Domain Reveals Versatile In Vivo Adapter Functions. Molecular Biology of the Cell, 2005, 16, 3128-3139.	2.1	33
101	A High-affinity Interaction with ADP-Actin Monomers Underlies the Mechanism and In Vivo Function of Srv2/cyclase-associated Protein. Molecular Biology of the Cell, 2004, 15, 5158-5171.	2.1	100
102	A Conserved Mechanism for Bni1- and mDia1-induced Actin Assembly and Dual Regulation of Bni1 by Bud6 and Profilin. Molecular Biology of the Cell, 2004, 15, 896-907.	2.1	240
103	Crystal Structures of a Formin Homology-2 Domain Reveal a Tethered Dimer Architecture. Cell, 2004, 116, 711-723.	28.9	325
104	Negative Regulation of Yeast WASp by Two SH3 Domain-Containing Proteins. Current Biology, 2003, 13, 1000-1008.	3.9	138
105	Coordinated Regulation of Actin Filament Turnover by a High-Molecular-Weight Srv2/CAP Complex, Cofilin, Profilin, and Aip1. Current Biology, 2003, 13, 2159-2169.	3.9	164
106	TheSaccharomyces cerevisiaeCalponin/Transgelin Homolog Scp1 Functions with Fimbrin to Regulate Stability and Organization of the Actin Cytoskeleton. Molecular Biology of the Cell, 2003, 14, 2617-2629.	2.1	83
107	Purification of yeast actin and actin-associated proteins. Methods in Enzymology, 2002, 351, 433-441.	1.0	37
108	Direct regulation of Arp2/3 complex activity and function by the actin binding protein coronin. Journal of Cell Biology, 2002, 159, 993-1004.	5.2	179

#	Article	IF	CITATIONS
109	An actin nucleation mechanism mediated by Bni1 and Profilin. Nature Cell Biology, 2002, 4, 626-631.	10.3	431
110	Yeast Eps15-like endocytic protein, Pan1p, activates the Arp2/3 complex. Nature Cell Biology, 2001, 3, 687-690.	10.3	158
111	Activation of the Arp2/3 Complex by the Actin Filament Binding Protein Abp1p. Journal of Cell Biology, 2001, 153, 627-634.	5.2	185
112	Coronin Promotes the Rapid Assembly and Cross-linking of Actin Filaments and May Link the Actin and Microtubule Cytoskeletons in Yeast. Journal of Cell Biology, 1999, 144, 83-98.	5.2	209
113	Regulation of the Cortical Actin Cytoskeleton in Budding Yeast by Twinfilin, a Ubiquitous Actin Monomer-sequestering Protein. Journal of Cell Biology, 1998, 142, 723-733.	5.2	115
114	Saccharomyces cerevisiae Duo1p and Dam1p, Novel Proteins Involved in Mitotic Spindle Function. Journal of Cell Biology, 1998, 143, 1029-1040.	5.2	90