
Christine Y. Chuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/547844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Peroxynitrous acid-modified extracellular matrix alters gene and protein expression in human coronary artery smooth muscle cells and induces a pro-inflammatory phenotype. Free Radical Biology and Medicine, 2022, 186, 43-52.	2.9	4
2	Influence of plasma halide, pseudohalide and nitrite ions on myeloperoxidase-mediated protein and extracellular matrix damage. Free Radical Biology and Medicine, 2022, 188, 162-174.	2.9	9
3	Dynein regulates Kv7.4 channel trafficking from the cell membrane. Journal of General Physiology, 2021, 153, .	1.9	14
4	An increase in mitochondrial DNA copy number was observed in monocyte cell line differentiated into macrophages but not in mitochondrial respiratory protein mRNA levels and TFAM. Free Radical Biology and Medicine, 2021, 165, 37-38.	2.9	0
5	Myeloperoxidase-derived damage to human plasma fibronectin: Modulation by protein binding and thiocyanate ions (SCNâ^'). Redox Biology, 2020, 36, 101641.	9.0	11
6	The leucine-rich repeat domain of human peroxidasin 1 promotes binding to laminin in basement membranes. Archives of Biochemistry and Biophysics, 2020, 689, 108443.	3.0	13
7	Binding of myeloperoxidase to the extracellular matrix of smooth muscle cells and subsequent matrix modification. Scientific Reports, 2020, 10, 666.	3.3	25
8	Hypochlorous acid-modified extracellular matrix contributes to the behavioral switching of human coronary artery smooth muscle cells. Free Radical Biology and Medicine, 2019, 134, 516-526.	2.9	30
9	Identification and quantification of sites of nitration and oxidation in the key matrix protein laminin and the structural consequences of these modifications. Redox Biology, 2019, 24, 101226.	9.0	16
10	Oxidation of human plasma fibronectin by inflammatory oxidants perturbs endothelial cell function. Free Radical Biology and Medicine, 2019, 136, 118-134.	2.9	28
11	Chlorination and oxidation of the extracellular matrix protein laminin and basement membrane extracts by hypochlorous acid and myeloperoxidase. Redox Biology, 2019, 20, 496-513.	9.0	64
12	Characterisation and quantification of protein oxidative modifications and amino acid racemisation in powdered infant milk formula. Free Radical Research, 2019, 53, 68-81.	3.3	32
13	Exposure of tropoelastin to peroxynitrous acid gives high yields of nitrated tyrosine residues, di-tyrosine cross-links and altered protein structure and function. Free Radical Biology and Medicine, 2018, 115, 219-231.	2.9	29
14	Chlorination and oxidation of human plasma fibronectin by myeloperoxidase-derived oxidants, and its consequences for smooth muscle cell function. Redox Biology, 2018, 19, 388-400.	9.0	42
15	Selenium-containing indolyl compounds: Kinetics of reaction with inflammation-associated oxidants and protective effect against oxidation of extracellular matrix proteins. Free Radical Biology and Medicine, 2017, 113, 395-405.	2.9	49
16	Peroxynitrite-mediated oxidation of plasma fibronectin. Free Radical Biology and Medicine, 2016, 97, 602-615.	2.9	43
17	Peroxynitrous acid induces structural and functional modifications to basement membranes and its key component, laminin. Free Radical Biology and Medicine, 2015, 89, 721-733.	2.9	35
18	Oxidation and modification of extracellular matrix and its role in disease. Free Radical Research, 2014, 48, 970-989.	3.3	45

CHRISTINE Y. CHUANG

#	Article	IF	CITATIONS
19	Epac1 increases migration of endothelial cells and melanoma cells via <scp>FGF</scp> 2â€mediated paracrine signaling. Pigment Cell and Melanoma Research, 2014, 27, 611-620.	3.3	29
20	Oxidation modifies the structure and function of the extracellular matrix generated by human coronary artery endothelial cells. Biochemical Journal, 2014, 459, 313-322.	3.7	34
21	The role of vascular-derived perlecan in modulating cell adhesion, proliferation and growth factor signaling. Matrix Biology, 2014, 35, 112-122.	3.6	105
22	Not All Lubricin Isoforms Are Substituted with a Glycosaminoglycan Chain. Connective Tissue Research, 2012, 53, 132-141.	2.3	14
23	The cartilage matrix molecule components produced by human foetal cartilage rudiment cells within scaffolds and the role of exogenous growth factors. Biomaterials, 2012, 33, 4078-4088.	11.4	15
24	Mechanisms and consequences of oxidative damage to extracellular matrix. Biochemical Society Transactions, 2011, 39, 1279-1287.	3.4	50
25	Similarity of Recombinant Human Perlecan Domain 1 by Alternative Expression Systems Bioactive Heterogenous Recombinant Human Perlecan D1. BMC Biotechnology, 2010, 10, 66.	3.3	12
26	Enhanced tumor growth in the NaS1 sulfate transporter null mouse. Cancer Science, 2010, 101, 369-373.	3.9	13
27	Heparan Sulfate-Dependent Signaling of Fibroblast Growth Factor 18 by Chondrocyte-Derived Perlecan. Biochemistry, 2010, 49, 5524-5532.	2.5	92
28	Myeloperoxidase-derived oxidants selectively disrupt the protein core of the heparan sulfate proteoglycan perlecan. Matrix Biology, 2010, 29, 63-73.	3.6	54
29	Recombinant heparan sulfate for use in tissue engineering applications. Journal of Chemical Technology and Biotechnology, 2008, 83, 496-504.	3.2	8
30	Tissue engineering of cartilages using biomatrices. Journal of Chemical Technology and Biotechnology, 2008, 83, 444-463.	3.2	21