Yean-Woei Kiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5478274/publications.pdf

Version: 2024-02-01

414414 361413 1,362 116 20 32 citations h-index g-index papers 116 116 116 903 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Film Thickness Dependence of Surface Plasmon Resonance Behavior at a Grating Structure of Highly Gaâ€Doped ZnO. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, .	1.8	O
2	Combined effects of surface plasmon coupling and FÃ \P rster resonance energy transfer on the light color conversion behaviors of colloidal quantum dots on an InGaN/GaN quantum-well nanodisk structure. Nanotechnology, 2021, 32, 135206.	2.6	18
3	Surface plasmon coupling effects on the f \tilde{A}^{q} rster resonance energy transfer from quantum dot into rhodamine 6G. Nanotechnology, 2021, 32, 295202.	2.6	12
4	Highly-Conductive, Transparent Ga-Doped ZnO Nanoneedles for Improving the Efficiencies of GaN Light-Emitting Diode and Si Solar Cell. ECS Journal of Solid State Science and Technology, 2020, 9, 015002.	1.8	2
5	Effects of Surface Plasmon Coupling on the Whispering-Gallery Resonance in a Hexagonal Nanowire Cavity Structure. Plasmonics, 2020, 15, 39-49.	3.4	2
6	Emission behaviors of colloidal quantum dots linked onto synthesized metal nanoparticles. Nanotechnology, 2020, 31, 095201.	2.6	10
7	Surface Plasmon Resonance-Induced Diffusion-Limited Aggregation in the Formation of Ag/AgOx Nanonetworks as Broad-Spectrum Transparent Conductors. ACS Applied Nano Materials, 2020, 3, 11399-11407.	5.0	2
8	Spatial range of the plasmonic Dicke effect in an InGaN/GaN multiple quantum well structure. Nanotechnology, 2020, 31, 295001.	2.6	6
9	Important role of surface plasmon coupling with the quantum wells in a surface plasmon enhanced color-converting structure of colloidal quantum dots on quantum wells. Optics Express, 2020, 28, 13352.	3.4	7
10	Formation of Surface Silver Nano-network Structures through Hot Electron Regulated Diffusion-limited Aggregation. Scientific Reports, 2019, 9, 6997.	3.3	5
11	Control of pore structure in a porous gold nanoparticle for effective cancer cell damage. Nanotechnology, 2019, 30, 025101.	2.6	3
12	Simulation study on light color conversion enhancement through surface plasmon coupling. Optics Express, 2019, 27, A629.	3.4	15
13	Color conversion efficiency enhancement of colloidal quantum dot through its linkage with synthesized metal nanoparticle on a blue light-emitting diode. Optics Letters, 2019, 44, 5691.	3.3	19
14	Surface plasmon resonance behaviors of a highly Ga-doped ZnO nano-grating structure. Optical Materials Express, 2019, 9, 1826.	3.0	4
15	Exocytosis of gold nanoparticle and photosensitizer from cancer cells and their effects on photodynamic and photothermal processes. Nanotechnology, 2018, 29, 235101.	2.6	6
16	Enhancement of Emission Efficiency of Deep-Ultraviolet AlGaN Quantum Wells Through Surface Plasmon Coupling with an Al Nanograting Structure. Plasmonics, 2018, 13, 863-872.	3.4	8
17	Polarity Control in Growing Highly Ga-Doped ZnO Nanowires with the Vapor–Liquid–Solid Process. ACS Applied Materials & Interfaces, 2018, 10, 40764-40772.	8.0	9
18	Enhancements of Cancer Cell Damage Efficiencies in Photothermal and Photodynamic Processes through Cell Perforation and Preheating with Surface Plasmon Resonance of Gold Nanoring. Molecules, 2018, 23, 3157.	3.8	4

#	Article	IF	Citations
19	Efficiency enhancement of light color conversion through surface plasmon coupling. Optics Express, 2018, 26, 23629.	3.4	20
20	Growth Model of a GaN Nanorod with the Pulsed-Growth Technique of Metalorganic Chemical Vapor Deposition. Crystal Growth and Design, 2018, 18, 3767-3773.	3.0	10
21	Different surface plasmon coupling behaviors of a surface Al nanoparticle between TE and TM polarizations in a deep-UV light-emitting diode. Optics Express, 2018, 26, 8340.	3.4	9
22	Coupling of a light-emitting diode with surface plasmon polariton or localized surface plasmon induced on surface silver gratings of different geometries. Optics Express, 2018, 26, 9205.	3.4	13
23	Resonance Behaviors of Localized Surface Plasmon on an Ag/GaN Nano-Grating Interface for Light-Emitting Diode Application. Plasmonics, 2018, 13, 2293-2304.	3.4	2
24	Further emission efficiency improvement of a commercial-quality light-emitting diode through surface plasmon coupling. Optics Letters, 2018, 43, 5631.	3.3	19
25	Combining High Hole Concentration in p-GaN and High Mobility in u-GaN for High p-Type Conductivity in a p-GaN/u-GaN Alternating-Layer Nanostructure. IEEE Transactions on Electron Devices, 2017, 64, 115-120.	3.0	13
26	Enhancing the Hole-Injection Efficiency of a Light-Emitting Diode by Increasing Mg Doping in the p-AlGaN Electron-Blocking Layer. IEEE Transactions on Electron Devices, 2017, 64, 3226-3233.	3.0	7
27	Dependencies of surface plasmon coupling effects on the p-GaN thickness of a thin-p-type light-emitting diode. Optics Express, 2017, 25, 21526.	3.4	29
28	Method for enhancing the favored transverse-electric-polarized emission of an AlGaN deep-ultraviolet quantum well. Optics Express, 2017, 25, 26365.	3.4	10
29	Anti-reflection behavior of a surface Ga-doped ZnO nanoneedle structure and the controlling factors. Optical Materials Express, 2017, 7, 4058.	3.0	11
30	High Modulation Bandwidth of a Light-Emitting Diode With Surface Plasmon Coupling. IEEE Transactions on Electron Devices, 2016, 63, 3989-3995.	3.0	21
31	Fabrication of multi-section nanorod light-emitting diode arrays. , 2016, , .		0
32	Coupling Behaviors of Surface Plasmon Polariton and Localized Surface Plasmon with an InGaN/GaN Quantum Well. Plasmonics, 2016, 11, 931-939.	3.4	8
33	Surface plasmon coupling in a deep-UV light-emitting diode with an embedded Al nanoparticle., 2015,,.		0
34	Evaluating the blue-shift behaviors of the surface plasmon coupling of an embedded light emitter with a surface Ag nanoparticle by adding a dielectric interlayer or coating. Optics Express, 2015, 23, 30709.	3.4	17
35	Photothermal Behaviors of Flowing Media Caused by Localized Surface Plasmon Resonance of Au Nanorings. Plasmonics, 2015, 10, 1565-1572.	3.4	0
36	Sacrificial Structure for Effective Sapphire Substrate Liftoff Based on Photoelectrochemical Etching. IEEE Photonics Technology Letters, 2015, 27, 770-773.	2.5	2

3

#	Article	IF	Citations
37	Thermal Annealing Effects on the Performance of a Ga-Doped ZnO Transparent-Conductor Layer in a Light-Emitting Diode. IEEE Transactions on Electron Devices, 2015, 62, 3742-3749.	3.0	12
38	Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode. Optics Express, 2015, 23, 32274.	3.4	9
39	Simulation study on surface plasmon coupled light-emitting diode. , 2015, , .		0
40	Using surface plasmon coupling for enhancing the emission efficiency of UV LED. , 2015, , .		0
41	Coupling Behaviors of a Radiating Dipole with the Surface Plasmon Induced on a Metal Protrusion. Plasmonics, 2015, 10, 241-249.	3.4	5
42	Behaviors of Surface Plasmon Coupled Light-Emitting Diodes Induced by Surface Ag Nanoparticles on Dielectric Interlayers. Plasmonics, 2015, 10, 1029-1040.	3 . 4	9
43	Growth of Highly Conductive Ga-Doped ZnO Nanoneedles. ACS Applied Materials & Amp; Interfaces, 2015, 7, 10525-10533.	8.0	24
44	Modulation behaviors of surface plasmon coupled light-emitting diode. Optics Express, 2015, 23, 8150.	3 . 4	33
45	Surface plasmon coupling for suppressing p-GaN absorption and TM-polarized emission in a deep-UV light-emitting diode. Optics Letters, 2015, 40, 4229.	3.3	14
46	Enhancements of the emission and light extraction of a radiating dipole coupled with localized surface plasmon induced on a surface metal nanoparticle in a light-emitting device. Optics Express, 2014, 22, A155.	3.4	28
47	Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles. Applied Physics Letters, 2014, 105, .	3.3	41
48	Localized Surface Plasmon Coupled Light-Emitting Diodes With Buried and Surface Ag Nanoparticles. IEEE Photonics Technology Letters, 2014, 26, 1699-1702.	2.5	5
49	Thermal Effects in a Bendable InGaN/GaN Quantum-Well Light-Emitting Diode. IEEE Photonics Technology Letters, 2014, 26, 1442-1445.	2.5	2
50	Surface plasmon coupling with a radiating dipole near a Ag nanoparticle embedded in GaN. Applied Physics Letters, 2013, 102, .	3.3	33
51	Vertical CdZnO/ZnO Quantum-Well Light-Emitting Diode. IEEE Photonics Technology Letters, 2013, 25, 317-319.	2.5	4
52	Surface-plasmon-coupled emission enhancement of a quantum well with a metal nanoparticle embedded in a light-emitting diode. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2599.	2.1	23
53	Vertical light-emitting diodes with surface gratings and rough surfaces for effective light extraction. Optics Express, 2013, 21, 17686.	3.4	17
54	Strain reduction and crystal improvement of an InGaN/GaN quantum-well light-emitting diode on patterned Si (110) substrate. Applied Physics Letters, 2013, 103, 141914.	3.3	4

#	Article	IF	CITATIONS
55	Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures. Optics Express, 2012, 20, A104.	3.4	30
56	Effects of overgrown p-layer on the emission characteristics of the InGaN/GaN quantum wells in a high-indium light-emitting diode. Optics Express, 2012, 20, 11321.	3.4	19
57	Photoelectrochemical Liftoff of Patterned Sapphire Substrate for Fabricating Vertical Light-Emitting Diode. IEEE Photonics Technology Letters, 2012, 24, 1775-1777.	2.5	13
58	MBE-Grown CdZnO/ZnO Multiple Quantum-Well Light-Emitting Diode on MOCVD-Grown p-Type GaN. IEEE Photonics Technology Letters, 2012, 24, 909-911.	2.5	10
59	Emission Efficiency Dependence on the p-GaN Thickness in a High-Indium InGaN/GaN Quantum-Well Light-Emitting Diode. IEEE Photonics Technology Letters, 2011, 23, 1757-1759.	2.5	7
60	Sapphire Substrate Liftoff With Photoelectrochemical Etching for Vertical Light-Emitting Diode Fabrication. IEEE Photonics Technology Letters, 2011, 23, 654-656.	2.5	12
61	Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode. Optics Express, 2011, 19, A914.	3.4	55
62	Geometry for Maximizing Localized Surface Plasmon Resonance of Au Nanorings with Random Orientations. Plasmonics, 2011, 6, 547-555.	3.4	9
63	Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with surface plasmon coupling. Journal of Applied Physics, 2010, 108, .	2.5	33
64	Reduction in the efficiency droop effect of a light-emitting diode through surface plasmon coupling. Applied Physics Letters, 2010, 96, .	3.3	58
65	Study of the localized surface plasmon resonance behaviors of Au nanorings with optical coherence tomography. , 2010, , .		0
66	Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer. Optics Express, 2010, 18, 2682.	3.4	63
67	Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles. Optics Express, 2010, 18, A207.	3.4	66
68	Improved surface plasmon coupling with an InGaN/GaN quantum well for more effective emission enhancement., 2009,,.		0
69	Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor. Applied Physics Letters, 2009, 94, .	3.3	39
70	Fabrication of sphere-like Au nanoparticles on substrate with laser irradiation and their polarized localized surface plasmon behaviors. Optics Express, 2009, 17, 14186.	3.4	35
71	Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaNâ^•GaN dual-quantum-well structure. Applied Physics Letters, 2008, 92, 013108.	3.3	40
72	Numerical Study on Quantum Efficiency Enhancement of a Light-Emitting Diode Based on Surface Plasmon Coupling With a Quantum Well. IEEE Photonics Technology Letters, 2008, 20, 1339-1341.	2.5	13

#	Article	IF	Citations
73	Surface plasmon coupling for light emission/absorption/conversion enhancement. , 2008, , .		О
74	Enhanced and partially polarized output of a light-emitting diode with its InGaN/GaN quantum well coupled with surface plasmons on a metal grating. Applied Physics Letters, 2008, 93, 231111.	3.3	62
75	Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter. Applied Physics Letters, 2007, 91, 233104.	3.3	20
76	Radiation Simulations of Top-Emitting Organic Light-Emitting Devices With Two- and Three-Microcavity Structures. Journal of Display Technology, 2006, 2, 130-137.	1.2	19
77	Electromagnetic modeling of organic light-emitting devices. Journal of Lightwave Technology, 2006, 24, 2450-2457.	4.6	24
78	Resolution Improvement in Optical Coherence Tomography with Segmented Spectrum Management. Optical and Quantum Electronics, 2005, 37, 1165-1173.	3.3	2
79	Dispersion Compensation in Optical Coherence Tomography with a Prism in a Rapid-Scanning Optical Delay Line. Optical and Quantum Electronics, 2005, 37, 1199-1212.	3.3	9
80	Optical Imaging and Tissue Characterization with Polarization Discrimination of Time-Gated Signals. Optical Review, 2003, 10, 488-492.	2.0	0
81	ULTRAFAST OPTICS IMAGING BASED ON POLARIZATION-DISCRIMINATION TECHNIQUES IN FILAMENTOUS TISSUES. Biomedical Engineering - Applications, Basis and Communications, 2002, 14, 237-242.	0.6	1
82	Analysis of phase-matching conditions in flexural-wave modulated fiber Bragg grating. Journal of Lightwave Technology, 2002, 20, 311-315.	4.6	20
83	Numerical simulation on pulsed operation of an all-semiconductor optical amplifier nonlinear loop device. Journal of Lightwave Technology, 2001, 19, 1768-1776.	4.6	2
84	Polarization-dependent characteristics and polarization gating in time-resolved optical imaging of skeletal muscle tissues. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7, 924-930.	2.9	3
85	Numerical study on a compact all-semiconductor-optical-amplifier Sagnac interferometer device. Optical and Quantum Electronics, 2000, 32, 585-608.	3.3	2
86	Inverse scattering of dielectric cylinders by a cascaded TE-TM method. IEEE Transactions on Microwave Theory and Techniques, 1999, 47, 1923-1930.	4.6	24
87	Nonlinear switching behaviours in a compact all-semiconductor optical-amplifier Sagnac interferometer device. IEEE Journal of Quantum Electronics, 1999, 35, 1469-1477.	1.9	7
88	Simulation study on semiconductor laser mode locking using nonlinear coupling in multimode-interference waveguide amplifiers. IEEE Journal of Quantum Electronics, 1999, 35, 1630-1639.	1.9	1
89	Iterative solution of inverse scattering for a two-dimensional dielectric object. International Journal of Imaging Systems and Technology, 1996, 7, 25-32.	4.1	2
90	Inverse scattering for conductors by the equivalent source method. IEEE Transactions on Antennas and Propagation, 1996, 44, 310-316.	5.1	36

#	Article	IF	Citations
91	Plasma-Dielectric Sandwich Structure Used as a Tunable Bandpass Microwave Filter (Short Paper). IEEE Transactions on Microwave Theory and Techniques, 1984, 32, 111-113.	4.6	15
92	Discrete energy conservation law and reciprocity relationship for one-dimensional wave propagation problems. IEEE Transactions on Antennas and Propagation, 1982, 30, 483-486.	0.8	2
93	The complex-power error-estimation criteria for one-dimensional wave propagation problems. IEEE Transactions on Antennas and Propagation, 1981, 29, 544-547.	0.8	1
94	A variational theory for wave propagation in a one-dimensional inhomogeneous medium. IEEE Transactions on Antennas and Propagation, 1980, 28, 762-769.	0.8	22
95	Plasma-dielectric sandwich structure used as a tunable microwave filter. , 0, , .		0
96	High-frequency beam wave propagation in a turbulent stratified ionosphere. , 0, , .		0
97	Pump-probe study on nonlinear switching in an all-active-semiconductor-optical-amplifier loop device.		0
98	Wavelength dependence and cross polarization effects of nonlinear switching in an all-semiconductor-optical-amplifier loop device. , 0, , .		0
99	All-semiconductor miniature nonlinear optical loop mirrors for GHz all-optical switching operation. , 0, , .		0
100	Imaging of the oral cancer tissues with optical coherence tomography using self-phase modulation in fiber for broadband source generation. , 0 , , .		0
101	Polarization dependent characteristics of skeletal muscle tissues. , 0, , .		0
102	Analysis of the transmission property in acoustics-induced fiber Bragg grating reflectors. , 0, , .		0
103	Polarization-gated imaging techniques based on time-resolved Stokes vectors for filament tissues. , 0,		0
104	Coupling behaviors of vertically coupled photonic crystal nano-cavities. , 0, , .		0
105	Coupling between core and ring modes in a microstructured fiber., 0,,.		0
106	Effect of defect structure on light extraction from a photonic crystal slab nanocavity. , 0, , .		0
107	Simulations on the radiation characteristics of an organic light-emitting diode. , 0, , .		0
108	Absorption effects on object depth determination in turbid media., 0,,.		0

#	Article	IF	CITATIONS
109	High-resolution optical coherence tomography and its dispersion compensation. , 0, , .		O
110	Mode coupling phenomena in long-period fiber gratings formed with micro bending. , 0, , .		0
111	Myocardial diagnosis by using polarization-sensitwe optical coherence tomography., 0,,.		O
112	Software dispersion compensation in optical coherence tomography. , 0, , .		0
113	Determination of target depth in a turbid medium with polarized transmitted signals. , 0, , .		O
114	Numerical analysis of two-dimensional photonic crystal directional couplers. , 0, , .		0
115	Photon migration in a three-dimension human brain model: monte carlo simulation. , 0, , .		0
116	Resolution improvement of optical coherence tomography with software spectral shaping., 0,,.		0