Garnette R Sutherland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/54781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tool-Tissue Forces in Hemangioblastoma Surgery. World Neurosurgery, 2022, 160, e242-e249.	0.7	2
2	Structural design of a microsurgery-specific haptic device: neuroArmPLUS prototype. Mechatronics, 2021, 73, 102481.	2.0	10
3	Interhemispheric arachnoid cyst. , 2021, 12, 125.		4
4	A data-driven performance dashboard for surgical dissection. Scientific Reports, 2021, 11, 15013.	1.6	12
5	Early Developments, Current Systems, and Future Directions. Neuromethods, 2021, , 193-227.	0.2	1
6	Data analytics interrogates robotic surgical performance using a microsurgery-specific haptic device. Expert Review of Medical Devices, 2020, 17, 721-730.	1.4	5
7	Evaluation of haptic devices and endâ€users: Novel performance metrics in teleâ€robotic microsurgery. International Journal of Medical Robotics and Computer Assisted Surgery, 2020, 16, e2101.	1.2	9
8	Neurointerventional Robotics: Challenges and Opportunities. Clinical Neuroradiology, 2020, 30, 203-208.	1.0	14
9	Tumor-associated macrophage infiltration in meningioma. Neuro-Oncology Advances, 2019, 1, vdz018.	0.4	34
10	Identification of PD-L2, B7-H3 and CTLA-4 immune checkpoint proteins in genetic subtypes of meningioma. Oncolmmunology, 2019, 8, e1512943.	2.1	31
11	Unprecedented response to combination BRAF and MEK inhibitors in adult anaplastic ganglioglioma. Journal of Neuro-Oncology, 2018, 137, 667-669.	1.4	12
12	Forces of Tool-Tissue Interaction to Assess Surgical Skill Level. JAMA Surgery, 2018, 153, 234.	2.2	35
13	Challenges in developing a magnetic resonance–compatible haptic hand-controller for neurosurgical training. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2018, 232, 1148-1167.	1.0	5
14	Towards Molecular Classification of Meningioma: Evolving Treatment and Diagnostic Paradigms. World Neurosurgery, 2018, 119, 366-373.	0.7	45
15	Supplementary Educational Models in Canadian Neurosurgery Residency Programs. Canadian Journal of Neurological Sciences, 2017, 44, 177-183.	0.3	7
16	Tool-Tissue Interaction Forces in Brain Arteriovenous Malformation Surgery. World Neurosurgery, 2017, 102, 221-228.	0.7	14
17	Nonparametric bootstrap technique for calibrating surgical SmartForceps: theory and application. Expert Review of Medical Devices, 2017, 14, 833-843.	1.4	3
18	Surgical Skill Assessment Using Motion Quality and Smoothness. Journal of Surgical Education, 2017, 74, 295-305.	1.2	66

#	Article	IF	CITATIONS
19	Improved transoral surgical tool design by CT measurements of the oral cavity and pharynx. Journal of Robotic Surgery, 2017, 11, 179-185.	1.0	2
20	Vibrational Profiling of Brain Tumors and Cells. Theranostics, 2017, 7, 2417-2430.	4.6	15
21	Treatment of Glioma Using neuroArm Surgical System. BioMed Research International, 2016, 2016, 1-8.	0.9	14
22	A Force-Sensing Bipolar Forceps to Quantify Tool–Tissue Interaction Forces in Microsurgery. IEEE/ASME Transactions on Mechatronics, 2016, 21, 2365-2377.	3.7	42
23	Real-time measurement of tool-tissue interaction forces in neurosurgery: Quantification and analysis. , 2016, , .		4
24	Quantifying force and positional frequency bands in neurosurgical tasks. Journal of Robotic Surgery, 2016, 10, 97-102.	1.0	9
25	Evaluation of haptic interfaces for simulation of drill vibration in virtual temporal bone surgery. Computers in Biology and Medicine, 2016, 78, 9-17.	3.9	13
26	Why Robots Entered Neurosurgery. Neuromethods, 2016, , 85-105.	0.2	5
27	Quantifying workspace and forces of surgical dissection during robotâ€assisted neurosurgery. International Journal of Medical Robotics and Computer Assisted Surgery, 2016, 12, 528-537.	1.2	30
28	Surgical tool motion during conventional freehand and robot-assisted microsurgery conducted using neuroArm. Advanced Robotics, 2016, 30, 621-633.	1.1	11
29	Robotics in the neurosurgical treatment of glioma. , 2015, 6, 1.		56
30	Performance evaluation of haptic handâ€controllers in a robotâ€essisted surgical system. International Journal of Medical Robotics and Computer Assisted Surgery, 2015, 11, 486-501.	1.2	45
31	Quantification of Forces During a Neurosurgical Procedure: A Pilot Study. World Neurosurgery, 2015, 84, 537-548.	0.7	35
32	Robotics for Image-Guided Neurosurgery. , 2015, , 475-497.		0
33	Lactate Storm Marks Cerebral Metabolism following Brain Trauma. Journal of Biological Chemistry, 2014, 289, 20200-20208.	1.6	44
34	Molecular susceptibility weighted imaging of the glioma rim in a mouse model. Journal of Neuroscience Methods, 2014, 226, 132-138.	1.3	19
35	Forces exerted during microneurosurgery: a cadaver study. International Journal of Medical Robotics and Computer Assisted Surgery, 2014, 10, 251-256.	1.2	43
36	Neurorobotics: Driving the Paradigm Shift. World Neurosurgery, 2014, 81, 668.	0.7	3

#	Article	IF	CITATIONS
37	Controversy in the Management of Lenticulostriate Artery Dissecting Aneurysm: A Case Report and Review of the Literature. World Neurosurgery, 2014, 81, 441.e1-441.e7.	0.7	18
38	Progress in Neurosurgical Robotics. , 2014, , 601-612.		4
39	Merging machines with microsurgery: clinical experience with neuroArm. Journal of Neurosurgery, 2013, 118, 521-529.	0.9	73
40	Toward Robot-Assisted Neurosurgical Lasers. IEEE Transactions on Biomedical Engineering, 2013, 60, 892-898.	2.5	10
41	The Evolution of neuroArm. Neurosurgery, 2013, 72, A27-A32.	0.6	93
42	Advancing Neurosurgery Through Translational Research. Neurosurgery, 2013, 72, A176-A181.	0.6	8
43	Evaluation of brain tumor vessels specific contrast agents for glioblastoma imaging. Neuro-Oncology, 2012, 14, 53-63.	0.6	66
44	Intracerebral Hemorrhage: The Pot Continues to Be Stirred. World Neurosurgery, 2012, 77, 57-58.	0.7	0
45	A Moveable 3-Tesla Intraoperative Magnetic Resonance Imaging System. Operative Neurosurgery, 2011, 68, ons168-ons179.	0.4	14
46	Intra-operative Robotics: NeuroArm. Acta Neurochirurgica Supplementum, 2011, 109, 231-236.	0.5	29
47	Intra-operative MRI at 3.0 Tesla: A Moveable Magnet. Acta Neurochirurgica Supplementum, 2011, 109, 151-156.	0.5	7
48	Identification of Disappearing Brain Lesions With Intraoperative Magnetic Resonance Imaging Prevents Surgery. Neurosurgery, 2010, 67, 1061-1065.	0.6	7
49	Informatic Surgery: The Union of Surgeon and Machine. World Neurosurgery, 2010, 74, 118-120.	0.7	11
50	Technological Convergence in the Neurosurgical Operating Room. World Neurosurgery, 2010, 74, 107-108.	0.7	1
51	Effect of force feedback from each DOF on the motion accuracy of a surgical tool in performing a robot-assisted tracing task. , 2010, 2010, 2093-6.		5
52	Advancing neurosurgery with image-guided robotics. Journal of Neurosurgery, 2009, 111, 1141-1149.	0.9	58
53	Application of intraoperative high-field magnetic resonance imaging in pediatric neurosurgery. Journal of Neurosurgery: Pediatrics, 2009, 4, 467-474.	0.8	53
54	The human brain utilizes lactate via the tricarboxylic acid cycle: a 13C-labelled microdialysis and high-resolution nuclear magnetic resonance study. Brain, 2009, 132, 2839-2849.	3.7	180

GARNETTE R SUTHERLAND

#	Article	IF	CITATIONS
55	The Development of Robotics for Interventional MRI. Neurosurgery Clinics of North America, 2009, 20, 193-206.	0.8	37
56	Surgical performance in a virtual environment. On the Horizon, 2009, 17, 345-355.	1.0	4
57	Integrating an Image-Guided Robot with Intraoperative MRI. IEEE Engineering in Medicine and Biology Magazine, 2008, 27, 59-65.	1.1	98
58	Human–Machine Interface for Robotic Surgery and Stereotaxy. IEEE/ASME Transactions on Mechatronics, 2008, 13, 355-361.	3.7	54
59	Recombinant Factor VIIa plus Surgery for Intracerebral Hemorrhage. Canadian Journal of Neurological Sciences, 2008, 35, 567-572.	0.3	19
60	Ceramic Aneurysm Clips. Operative Neurosurgery, 2008, 62, ONS400-ONS406.	0.4	8
61	AN IMAGE-GUIDED MAGNETIC RESONANCE-COMPATIBLE SURGICAL ROBOT. Neurosurgery, 2008, 62, 286-293.	0.6	94
62	Truncation of the Krebs Cycle During Hypoglycemic Coma. Medicinal Chemistry, 2008, 4, 379-385.	0.7	40
63	AN INTEGRATED RADIO FREQUENCY PROBE AND CRANIAL CLAMP FOR INTRAOPERATIVE MAGNETIC RESONANCE IMAGING. Operative Neurosurgery, 2007, 60, E179-E180.	0.4	1
64	Primary intracerebral hemorrhage. Journal of Clinical Neuroscience, 2006, 13, 511-517.	0.8	154
65	Surgical Robotics: A Review and Neurosurgical Prototype Development. Neurosurgery, 2004, 54, 525-537.	0.6	131
66	Mobile intraoperative MRI in neurosurgery at 1.5 T. International Congress Series, 2003, 1256, 613-618.	0.2	1
67	NeuroArm: an MR compatible robot for microsurgery. International Congress Series, 2003, 1256, 504-508.	0.2	68
68	Aneurysm clips. Journal of Neurosurgery, 2003, 98, 638-641.	0.9	10
69	Intraoperative Magnetic Resonance: An Inflection Point in Neurosurgery?. Techniques in Neurosurgery, 2002, 7, 246-251.	0.3	3
70	The Vision of Intraoperative Magnetic Resonance Imaging. Techniques in Neurosurgery, 2002, 7, 344-351.	0.3	1
71	Intraoperative Assessment of Aneurysm Clipping Using Magnetic Resonance Angiography and Diffusion-weighted Imaging: Technical Case Report. Neurosurgery, 2002, 50, 893-898.	0.6	46
72	Intraoperative Magnetic Resonance Imaging Using a Mobile 1.5-Tesla Magnet. Techniques in Neurosurgery, 2002, 7, 299-307.	0.3	3

GARNETTE R SUTHERLAND

#	Article	IF	CITATIONS
73	Optimizing Epilepsy Surgery with Intraoperative MR Imaging. Epilepsia, 2002, 43, 425-429.	2.6	46
74	The engineering of an interventional MRI with a movable 1.5 Tesla magnet. Journal of Magnetic Resonance Imaging, 2001, 13, 78-86.	1.9	33
75	Intraoperative Magnetic Resonance Imaging for Skull Base Surgery. Laryngoscope, 2001, 111, 1570-1575.	1.1	34
76	6-Aminonicotinamide inhibition of the pentose phosphate pathway in rat neocortex. NeuroReport, 2000, 11, 1845-1848.	0.6	19
77	Advances in Mobile Intraoperative Magnetic Resonance Imaging. Neurosurgery, 2000, 47, 131-138.	0.6	107
78	Advances in Mobile Intraoperative Magnetic Resonance Imaging. Neurosurgery, 2000, 47, 131-138.	0.6	42
79	Hypothermia: depression of tricarboxylic acid cycle flux and evidence for pentose phosphate shunt upregulation. Journal of Neurosurgery, 1999, 90, 339-347.	0.9	70
80	A mobile high-field magnetic resonance system for neurosurgery. Journal of Neurosurgery, 1999, 91, 804-813.	0.9	234
81	Utility of a Moveable 1.5 Tesla Intraoperative MR Imaging System. Canadian Journal of Neurological Sciences, 1999, 26, 313-316.	0.3	26
82	Postischemic hypothermia. Molecular Neurobiology, 1997, 14, 171-201.	1.9	269
83	²³ Na Nuclear Magnetic Resonance Spectral Changes During and After Forebrain Ischemia in Hypoglycemic, Normoglycemic, and Hyperglycemic Rats. Stroke, 1996, 27, 957-964.	1.0	16
84	1H MRS of high grade astrocytomas: Mobile lipid accumulation in necrotic tissue. NMR in Biomedicine, 1994, 7, 149-155.	1.6	211
85	Mobile lipids and metabolic heterogeneity of brain tumours as detectable byEx Vivo1H MR spectroscopy. NMR in Biomedicine, 1994, 7, 172-180.	1.6	86
86	Phosphate Energy Metabolism During Domoic Acid-Induced Seizures. Epilepsia, 1993, 34, 996-1002.	2.6	12
87	Epidemiology and Clinical Features of Vestibular Schwannoma in Manitoba, Canada. Canadian Journal of Neurological Sciences, 1993, 20, 126-130.	0.3	24
88	Magnetic Resonance Imaging and 31P Magnetic Resonance Spectroscopy Study of the Effect of Temperature on Ischemic Brain Injury. Canadian Journal of Neurological Sciences, 1992, 19, 317-325.	0.3	37
89	1H NMR properties ofN-acetylaspartylglutamate in extracts of nervous tissue of the rat. NMR in Biomedicine, 1992, 5, 43-47.	1.6	37
90	High-Resolution1H NMR spectroscopy studies of extracts of human cerebral neoplasms. Magnetic Resonance in Medicine, 1992, 24, 123-136.	1.9	211

#	Article	IF	CITATIONS
91	Incidence and clinicopathological features of meningioma. Journal of Neurosurgery, 1989, 71, 665-672.	0.9	330
92	Biological and methodological implications of prostaglandin involvement in mouse brain lipid peroxidation measurements. Neurochemical Research, 1989, 14, 217-220.	1.6	46
93	Platelet aggregation within cerebral arteriovenous malformations. Journal of Neurosurgery, 1988, 68, 198-204.	0.9	17