

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5477793/publications.pdf Version: 2024-02-01

KE TAO

#	Article	IF	CITATIONS
1	Design, Synthesis, and Antifungal Activities of Novel Aromatic Carboxamides Containing a Diphenylamine Scaffold. Journal of Agricultural and Food Chemistry, 2019, 67, 5008-5016.	5.2	53
2	Design, synthesis and antifungal evaluation of novel pyrazole carboxamides with diarylamines scaffold as potent succinate dehydrogenase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3042-3045.	2.2	42
3	Design, synthesis and in vitro antibacterial/antifungal evaluation of novel 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7(1-piperazinyl)quinoline-3-carboxylic acid derivatives. European Journal of Medicinal Chemistry, 2009, 44, 4726-4733.	5.5	40
4	Design, synthesis and antifungal activity of novel furancarboxamide derivatives. European Journal of Medicinal Chemistry, 2016, 120, 244-251.	5.5	35
5	Design, synthesis and antifungal activity of novel fenfuram-diarylamine hybrids. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 90-93.	2.2	31
6	Lead optimization and anti-plant pathogenic fungi activities of daphneolone analogues from Stellera chamaejasme L Pesticide Biochemistry and Physiology, 2009, 93, 133-137.	3.6	30
7	Unraveling the polypharmacology of a natural antifungal product, eugenol, against <i>Rhizoctonia solani</i> . Pest Management Science, 2021, 77, 3469-3483.	3.4	30
8	Synthesis of novel fenfuram-diarylether hybrids as potent succinate dehydrogenase inhibitors. Bioorganic Chemistry, 2017, 73, 76-82.	4.1	27
9	Synthesis and <i>In Vitro</i> Antifungal Evaluation of 1,3,5â€Trisubstitutedâ€2â€Pyrazoline Derivatives. Chemical Biology and Drug Design, 2012, 79, 279-289.	3.2	26
10	Synthesis and biological evaluation of novel pyrazole carboxamide with diarylamine-modiï¬ed scaffold as potent antifungal agents. Chinese Chemical Letters, 2017, 28, 1731-1736.	9.0	23
11	Discovery of N-(4-fluoro-2-(phenylamino)phenyl)-pyrazole-4-carboxamides as potential succinate dehydrogenase inhibitors. Pesticide Biochemistry and Physiology, 2019, 158, 175-184.	3.6	23
12	Mechanism of Action of Novel Pyrazole Carboxamide Containing a Diarylamine Scaffold against <i>Rhizoctonia solani</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 11068-11076.	5.2	21
13	Investigation of novel pyrazole carboxamides as new apoptosis inducers on neuronal cells in Helicoverpa zea. Bioorganic and Medicinal Chemistry, 2018, 26, 2280-2286.	3.0	19
14	Cloning, Expression, and Purification of Insecticidal Protein Pr596 from Locust Pathogen Serratia marcescens HR-3. Current Microbiology, 2007, 55, 228-233.	2.2	16
15	Neochamaejasmin A extracted from Stellera chamaejasme L. induces apoptosis involving mitochondrial dysfunction and oxidative stress in Sf9 cells. Pesticide Biochemistry and Physiology, 2019, 157, 169-177.	3.6	12
16	Identification and characterization of the Bacillus atrophaeus strain J-1 as biological agent of apple ring rot disease. Journal of Plant Diseases and Protection, 2020, 127, 367-378.	2.9	12
17	Apoptotic effects of 1,5-bis-(5-nitro-2-furanyl)-1, K]4-pentadien-3-one on Drosophila SL2 cells. Molecular and Cellular Toxicology, 2015, 11, 187-192.	1.7	11
18	AW1 Neuronal Cell Cytotoxicity: The Mode of Action of Insecticidal Fatty Acids. Journal of Agricultural and Food Chemistry, 2019, 67, 12129-12136.	5.2	11

Κε ΤΑΟ

#	Article	IF	CITATIONS
19	Cytotoxicity evaluation and apoptosis-inducing effects of furanone analogues in insect cell line SL2. Food and Agricultural Immunology, 2018, 29, 964-975.	1.4	10
20	Isolation and identification of Paracoccus sp. FD3 and evaluation of its formaldehyde degradation kinetics. Biotechnology and Bioprocess Engineering, 2013, 18, 300-305.	2.6	9
21	Synthesis and bioactivity evaluation of novel benzamide derivatives containing a diphenyl ether moiety. Journal of Pesticide Sciences, 2014, 39, 187-192.	1.4	9
22	lsochamaejasmin induces toxic effects on <scp><i>Helicoverpa zea</i></scp> via <scp>DNA</scp> damage and mitochondriaâ€associated apoptosis. Pest Management Science, 2021, 77, 557-567.	3.4	9
23	Toxicity and physiological actions of biflavones on potassium current in insect neuronal cells. Pesticide Biochemistry and Physiology, 2021, 171, 104735.	3.6	9
24	<i>N</i> â€{2â€{(3â€Chlorophenyl)amino]â€phenyl]â€3â€(difluoromethyl)â€1â€methylâ€1 <i>H</i> â€pyrazoleâ Synthesis, Crystal Structure, Molecular Docking and Biological Activities. Chemistry and Biodiversity, 2019, 16, e1900118.	€4â€carbo 2.1	oxamide: 8
25	Isopropanol biodegradation by immobilized Paracoccus denitrificans in a three-phase fluidized bed reactor. Preparative Biochemistry and Biotechnology, 2016, 46, 747-754.	1.9	6
26	Investigation of 1-(4-morpholinophenyl)-3-(4-fluorophenyl)-propenone and 1-(4-morpholinophenyl)-3-(3-fluorophenyl)-propenone as new apoptosis inducers onSpodoptera frugiperda(Sf9) cells. Toxicology Mechanisms and Methods, 2012, 22, 315-320.	2.7	5
27	Synthesis and Biological Evaluation of Novel Benodanil-Heterocyclic Carboxamide Hybrids as a Potential Succinate Dehydrogenase Inhibitors. Molecules, 2020, 25, 4291.	3.8	4
28	Preliminary analysis of geographical distribution based on cold hardiness for <i>Evergestis extimalis</i> (Scopoli) (<i>Lepidoptera: Pyralidae</i>) on Qinghai–Tibet Plateau. Entomological Research, 2019, 49, 13-20.	1.1	3
29	Isolation, Identification and Insecticidal Activity of the Secondary Metabolites of Talaromyces purpureogenus BS5. Journal of Fungi (Basel, Switzerland), 2022, 8, 288.	3.5	3
30	Neochamaejasmin B extracted from <i>Stellera chamaejasme</i> L. induces apoptosis through caspaseâ€10â€dependent way in insect neuronal cells. Archives of Insect Biochemistry and Physiology, 2022, 110, e21892.	1.5	3