Romain L Barnard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5477742/publications.pdf

Version: 2024-02-01

39 papers 4,465 citations

28 h-index

186209

302012 39 g-index

40 all docs

40 docs citations

times ranked

40

6818 citing authors

#	Article	IF	CITATIONS
1	Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME Journal, 2013, 7, 2229-2241.	4.4	762
2	Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME Journal, 2013, 7, 2061-2068.	4.4	661
3	Global change, nitrification, and denitrification: A review. Global Biogeochemical Cycles, 2005, 19, .	1.9	310
4	Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions. Basic and Applied Ecology, 2017, 23, 1-73.	1.2	307
5	Drought effects on allocation of recent carbon: from beech leaves to soil CO ₂ efflux. New Phytologist, 2009, 184, 950-961.	3.5	280
6	Tracing carbon and oxygen isotope signals from newly assimilated sugars in the leaves to the treeâ€ring archive. Plant, Cell and Environment, 2009, 32, 780-795.	2.8	207
7	Changing precipitation pattern alters soil microbial community response to wet-up under a Mediterranean-type climate. ISME Journal, 2015, 9, 946-957.	4.4	166
8	Temporal dynamics of the carbon isotope composition in a Pinus sylvestris stand: from newly assimilated organic carbon to respired carbon dioxide. Oecologia, 2008, 156, 737-750.	0.9	140
9	Effectiveness of ecological rescue for altered soil microbial communities and functions. ISME Journal, 2017, 11, 272-283.	4.4	135
10	Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nature Ecology and Evolution, 2020, 4, 1602-1611.	3.4	114
11	Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Mycorrhiza, 2011, 21, 689-702.	1.3	102
12	Diversity Promotes Temporal Stability across Levels of Ecosystem Organization in Experimental Grasslands. PLoS ONE, 2010, 5, e13382.	1.1	95
13	Depth matters: effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system. ISME Journal, 2018, 12, 1061-1071.	4.4	94
14	A comparison of the strength of biodiversity effects across multiple functions. Oecologia, 2013, 173, 223-237.	0.9	91
15	Effects of drought and N-fertilization on N cycling in two grassland soils. Oecologia, 2013, 171, 705-717.	0.9	91
16	Rewetting of soil: Revisiting the origin of soil CO2 emissions. Soil Biology and Biochemistry, 2020, 147, 107819.	4.2	87
17	Evaporative enrichment and time lags between ?180 of leaf water and organic pools in a pine stand. Plant, Cell and Environment, 2007, 30, 539-550.	2.8	84
18	Several components of global change alter nitrifying and denitrifying activities in an annual grassland. Functional Ecology, 2006, 20, 557-564.	1.7	83

#	Article	IF	Citations
19	Soil Environmental Conditions and Microbial Build-Up Mediate the Effect of Plant Diversity on Soil Nitrifying and Denitrifying Enzyme Activities in Temperate Grasslands. PLoS ONE, 2013, 8, e61069.	1.1	78
20	Theî′18O of root crown water best reflects source waterÎ′18O in different types of herbaceous species. Rapid Communications in Mass Spectrometry, 2006, 20, 3799-3802.	0.7	62
21	Plant species diversity affects soil–atmosphere fluxes of methane and nitrous oxide. Oecologia, 2016, 181, 919-930.	0.9	56
22	Dynamics of nitrifying activities, denitrifying activities and nitrogen in grassland mesocosms as altered by elevated CO 2. New Phytologist, 2004, 162, 365-376.	3.5	48
23	Flood pulses control soil nitrogen cycling in a dynamic river floodplain. Geoderma, 2014, 228-229, 14-24.	2.3	45
24	Atmospheric CO2 elevation has little effect on nitrifying and denitrifying enzyme activity in four European grasslands. Global Change Biology, 2004, 10, 488-497.	4.2	44
25	Drought Stress Memory at the Plant Cycle Level: A Review. Plants, 2021, 10, 1873.	1.6	44
26	Effects of Plant Diversity, Functional Group Composition, and Fertilization on Soil Microbial Properties in Experimental Grassland. PLoS ONE, 2015, 10, e0125678.	1.1	37
27	Global Change Could Amplify Fire Effects on Soil Greenhouse Gas Emissions. PLoS ONE, 2011, 6, e20105.	1.1	35
28	Short-Term Uptake of 15N by a Grass and Soil Micro-Organisms after Long-Term Exposure to Elevated CO2. Plant and Soil, 2006, 280, 91-99.	1.8	28
29	Plant, soil microbial and soil inorganic nitrogen responses to elevated CO2: a study in microcosms of Holcus lanatus. Acta Oecologica, 2005, 27, 171-178.	0.5	27
30	Impacts of summer water limitation on the carbon balance of a Scots pine forest in the southern upper Rhine plain. Agricultural and Forest Meteorology, 2008, 148, 1815-1826.	1.9	27
31	Bacterial communities drive the resistance of soil multifunctionality to land-use change in karst soils. European Journal of Soil Biology, 2021, 104, 103313.	1.4	25
32	The dissipation and microbial ecotoxicity of tebuconazole and its transformation products in soil under standard laboratory and simulated winter conditions. Science of the Total Environment, 2018, 637-638, 892-906.	3.9	23
33	Soil Nitrogen Dynamics in a River Floodplain Mosaic. Journal of Environmental Quality, 2012, 41, 2033-2045.	1.0	22
34	Ontogeny and leaf gas exchange mediate the carbon isotopic signature of herbaceous plants. Plant, Cell and Environment, 2011, 34, 465-479.	2.8	19
35	Precipitation patterns and N availability alter plant-soil microbial C and N dynamics. Plant and Soil, 2021, 466, 151-163.	1.8	11
36	Physiological controls of the isotopic time lag between leaf assimilation and soil CO2 efflux. Functional Plant Biology, 2014, 41, 850.	1.1	9

#	Article	IF	CITATIONS
37	Effects of contrasting precipitation patterns on the trajectory of actively growing and inactive microbial communities after rewetting. Soil Biology and Biochemistry, 2019, 134, 172-174.	4.2	5
38	Aboveground and Belowground Plant Traits Explain Latitudinal Patterns in Topsoil Fungal Communities From Tropical to Cold Temperate Forests. Frontiers in Microbiology, 2021, 12, 633751.	1.5	5
39	Effects of Ontogeny on l´13C of Plant- and Soil-Respired CO2 and on Respiratory Carbon Fractionation in C3 Herbaceous Species. PLoS ONE, 2016, 11, e0151583.	1.1	4