List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5477600/publications.pdf Version: 2024-02-01



Μινιορίι Οςλόλ

| #  | Article                                                                                                                                                                                                                                                                                     | lF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Twoâ€Dimensional Dielectric Nanosheets: Novel Nanoelectronics From Nanocrystal Building Blocks.<br>Advanced Materials, 2012, 24, 210-228.                                                                                                                                                   | 11.1 | 987       |
| 2  | Exfoliated oxide nanosheets: new solution to nanoelectronics. Journal of Materials Chemistry, 2009, 19, 2503.                                                                                                                                                                               | 6.7  | 543       |
| 3  | Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nature Materials, 2015, 14, 1002-1007.                                                                                                                                           | 13.3 | 530       |
| 4  | Large remanent polarization of (Bi,Nd)4Ti3O12 epitaxial thin films grown by metalorganic chemical vapor deposition. Applied Physics Letters, 2002, 80, 2746-2748.                                                                                                                           | 1.5  | 348       |
| 5  | Vapour–liquid–solid growth of monolayer MoS2 nanoribbons. Nature Materials, 2018, 17, 535-542.                                                                                                                                                                                              | 13.3 | 286       |
| 6  | High-κ Dielectric Nanofilms Fabricated from Titania Nanosheets. Advanced Materials, 2006, 18, 1023-1027.                                                                                                                                                                                    | 11.1 | 206       |
| 7  | Construction of Highly Ordered Lamellar Nanostructures through Langmuirâ^'Blodgett Deposition of<br>Molecularly Thin Titania Nanosheets Tens of Micrometers Wide and Their Excellent Dielectric<br>Properties. ACS Nano, 2009, 3, 1097-1106.                                                | 7.3  | 171       |
| 8  | Effect of cosubstitution of La and V in Bi4Ti3O12 thin films on the low-temperature deposition. Applied Physics Letters, 2002, 80, 100-102.                                                                                                                                                 | 1.5  | 169       |
| 9  | Robust High-κ Response in Molecularly Thin Perovskite Nanosheets. ACS Nano, 2010, 4, 5225-5232.                                                                                                                                                                                             | 7.3  | 141       |
| 10 | Engineered Interfaces of Artificial Perovskite Oxide Superlattices <i>via</i> Nanosheet Deposition Process. ACS Nano, 2010, 4, 6673-6680.                                                                                                                                                   | 7.3  | 141       |
| 11 | Gigantic Magneto–Optical Effects in Multilayer Assemblies of Two-DimensionalÂTitania Nanosheets.<br>Advanced Materials, 2006, 18, 295-299.                                                                                                                                                  | 11.1 | 137       |
| 12 | Large magnetoelectric coupling in magnetically short-range ordered Bi5Ti3FeO15 film. Scientific Reports, 2014, 4, 5255.                                                                                                                                                                     | 1.6  | 135       |
| 13 | Chemical composition and crystal structure of superconducting sodium cobalt oxide<br>bilayer-hydrateElectronic supplementary information (ESI) available: Rietveld refinement patterns. See<br>http://www.rsc.org/suppdata/jm/b4/b400181h/. Journal of Materials Chemistry, 2004, 14, 1448. | 6.7  | 117       |
| 14 | Defect Engineering for Control of Polarization Properties in SrBi2Ta2O9. Japanese Journal of Applied Physics, 2002, 41, 7062-7075.                                                                                                                                                          | 0.8  | 114       |
| 15 | Preparation and characterization of a- and b-axis-oriented epitaxially grown Bi4Ti3O12-based thin films with long-range lattice matching. Applied Physics Letters, 2002, 81, 1660-1662.                                                                                                     | 1.5  | 101       |
| 16 | Large remanent polarization of Bi4Ti3O12-based thin films modified by the site engineering technique.<br>Journal of Applied Physics, 2002, 92, 1518-1521.                                                                                                                                   | 1.1  | 92        |
| 17 | High performance silicon-based anodes in solid-state lithium batteries. Energy and Environmental<br>Science, 2014, 7, 662-666.                                                                                                                                                              | 15.6 | 84        |
| 18 | All-Nanosheet Ultrathin Capacitors Assembled Layer-by-Layer <i>via</i> Solution-Based Processes. ACS<br>Nano, 2014, 8, 2658-2666.                                                                                                                                                           | 7.3  | 82        |

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | <i>In Situ</i> Tuning of Magnetization and Magnetoresistance in Fe <sub>3</sub> O <sub>4</sub> Thin<br>Film Achieved with All-Solid-State Redox Device. ACS Nano, 2016, 10, 1655-1661. | 7.3  | 80        |
| 20 | Wafer-scale and deterministic patterned growth of monolayer MoS <sub>2</sub> <i>via</i> vapor–liquid–solid method. Nanoscale, 2019, 11, 16122-16129.                                   | 2.8  | 76        |
| 21 | Controlled Polarizability of Oneâ€Nanometerâ€Thick Oxide Nanosheets for Tailored, Highâ€≺i>κ<br>Nanodielectrics. Advanced Functional Materials, 2011, 21, 3482-3487.                   | 7.8  | 72        |
| 22 | The rise of 2D dielectrics/ferroelectrics. APL Materials, 2019, 7, .                                                                                                                   | 2.2  | 66        |
| 23 | Graphitic Carbon Nitrideâ€Based Lowâ€Dimensional Heterostructures for Photocatalytic Applications.<br>Solar Rrl, 2020, 4, 1900435.                                                     | 3.1  | 65        |
| 24 | Synthesis of Mn-Substituted Titania Nanosheets and Ferromagnetic Thin Films with Controlled Doping. Chemistry of Materials, 2009, 21, 4366-4373.                                       | 3.2  | 63        |
| 25 | Neat monolayer tiling of molecularly thin two-dimensional materials in 1 min. Science Advances, 2017, 3, e1700414.                                                                     | 4.7  | 63        |
| 26 | RbBiNb <sub>2</sub> O <sub>7</sub> : A New Lead-Free High- <i>T</i> <sub>c</sub> Ferroelectric.<br>Chemistry of Materials, 2012, 24, 3111-3113.                                        | 3.2  | 60        |
| 27 | Ferroelectric properties of lanthanide-substituted Bi4Ti3O12 epitaxial thin films grown by metalorganic chemical vapor deposition. Journal of Applied Physics, 2003, 93, 1707-1712.    | 1.1  | 55        |
| 28 | Atomic Layer Engineering of High-κ Ferroelectricity in 2D Perovskites. Journal of the American Chemical<br>Society, 2017, 139, 10868-10874.                                            | 6.6  | 55        |
| 29 | The effects of oxygen partial pressure on local structural properties for Ga-doped ZnO thin films.<br>Thin Solid Films, 2006, 494, 38-41.                                              | 0.8  | 53        |
| 30 | 2D Perovskite Nanosheets with Thermally-Stable High-κ Response: A New Platform for High-Temperature<br>Capacitors. ACS Applied Materials & Interfaces, 2014, 6, 19510-19514.           | 4.0  | 50        |
| 31 | High Thermal Robustness of Molecularly Thin Perovskite Nanosheets and Implications for Superior<br>Dielectric Properties. ACS Nano, 2014, 8, 5449-5461.                                | 7.3  | 49        |
| 32 | Tunable Bandgap Narrowing Induced by Controlled Molecular Thickness in 2D Mica Nanosheets.<br>Chemistry of Materials, 2015, 27, 4222-4228.                                             | 3.2  | 47        |
| 33 | Gigantic magneto-optical effects induced by (Feâ^•Co)-cosubstitution in titania nanosheets. Applied<br>Physics Letters, 2008, 92, 253110.                                              | 1.5  | 46        |
| 34 | Selfâ€Assembly Atomic Stacking Transport Layer of 2D Layered Titania for Perovskite Solar Cells with<br>Extended UV Stability. Advanced Energy Materials, 2018, 8, 1701722.            | 10.2 | 46        |
| 35 | Coexistence of Magnetic Order and Ferroelectricity at 2D Nanosheet Interfaces. Journal of the<br>American Chemical Society, 2016, 138, 7621-7625.                                      | 6.6  | 45        |
| 36 | Orbital Reconstruction and Interface Ferromagnetism in Self-Assembled Nanosheet Superlattices. ACS<br>Nano, 2011, 5, 6871-6879.                                                        | 7.3  | 44        |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Self-Assembled Nanofilm of Monodisperse Cobalt Hydroxide Hexagonal Platelets: Topotactic<br>Conversion into Oxide and Resistive Switching. Chemistry of Materials, 2010, 22, 6341-6346.                | 3.2 | 42        |
| 38 | Nanoarchitectonics in dielectric/ferroelectric layered perovskites: from bulk 3D systems to 2D nanosheets. Dalton Transactions, 2018, 47, 2841-2851.                                                   | 1.6 | 42        |
| 39 | Crystallization and nanometric heterogeneity in glass: <i>In situ</i> observation of the boson peak<br>during crystallization. Physical Review B, 2009, 79, .                                          | 1.1 | 41        |
| 40 | Controlled doping of semiconducting titania nanosheets for tailored spinelectronic materials.<br>Nanoscale, 2014, 6, 14227-14236.                                                                      | 2.8 | 41        |
| 41 | Nanosheet architectonics: a hierarchically structured assembly for tailored fusion materials.<br>Polymer Journal, 2015, 47, 89-98.                                                                     | 1.3 | 40        |
| 42 | Mechanical force involved multiple fields switching of both local ferroelectric and magnetic domain in a Bi5Ti3FeO15 thin film. NPG Asia Materials, 2017, 9, e349-e349.                                | 3.8 | 37        |
| 43 | Low-Temperature Synthesis of NaNbO3 Nanopowders and their Thin Films from a Novel Carbon-Free<br>Precursor. Journal of the American Ceramic Society, 2006, 89, 1188-1192.                              | 1.9 | 30        |
| 44 | Langmuir–Blodgett Fabrication of Nanosheet-Based Dielectric Films without an Interfacial Dead Layer.<br>Japanese Journal of Applied Physics, 2008, 47, 7556.                                           | 0.8 | 30        |
| 45 | Extra‣arge Mechanical Anisotropy of a Hydrogel with Maximized Electrostatic Repulsion between<br>Cofacially Aligned 2D Electrolytes. Angewandte Chemie - International Edition, 2018, 57, 12508-12513. | 7.2 | 30        |
| 46 | Single Droplet Assembly for Two-Dimensional Nanosheet Tiling. ACS Nano, 2020, 14, 15216-15226.                                                                                                         | 7.3 | 29        |
| 47 | On/Off Boundary of Photocatalytic Activity between Single- and Bilayer MoS <sub>2</sub> . ACS Nano, 2020, 14, 6663-6672.                                                                               | 7.3 | 29        |
| 48 | <i>A</i> ―and <i>B</i> â€6ite Modified Perovskite Nanosheets and Their Integrations into Highâ€ <i>k</i> Dielectric Thin Films. International Journal of Applied Ceramic Technology, 2012, 9, 29-36.   | 1.1 | 28        |
| 49 | Synthesis of Highly Strained Mesostructured SrTiO <sub>3</sub> /BaTiO <sub>3</sub> Composite Films<br>with Robust Ferroelectricity. Chemistry - A European Journal, 2013, 19, 4446-4450.               | 1.7 | 27        |
| 50 | The effects of neodymium content and site occupancy on spontaneous polarization of epitaxial (Bi4â^'xNdx)Ti3O12 films. Journal of Applied Physics, 2005, 98, 024110.                                   | 1.1 | 26        |
| 51 | Impact of perovskite layer stacking on dielectric responses in KCa2Nanâ^'3NbnO3n+1â€^(n=3–6)<br>Dion–Jacobson homologous series. Applied Physics Letters, 2010, 96, .                                  | 1.5 | 26        |
| 52 | Precursive stage of nanocrystallization in niobium oxide-containing glass. Applied Physics Letters, 2009, 95, .                                                                                        | 1.5 | 23        |
| 53 | Hunting for Monolayer Oxide Nanosheets and Their Architectures. Scientific Reports, 2016, 6, 19402.                                                                                                    | 1.6 | 23        |
| 54 | Elucidation of structure and conduction mechanism in Nd-Mn substituted Y-type strontium hexaferrites. Journal of Alloys and Compounds, 2017, 723, 9-16.                                                | 2.8 | 22        |

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Probing intrinsic polarization properties in bismuth-layered ferroelectric films. Applied Physics<br>Letters, 2007, 90, 112914.                                                                                                                 | 1.5  | 21        |
| 56 | Structural heterogeneity and homogeneous nucleation of 1BaO-2SiO2 glass. Applied Physics Letters, 2009, 94, 211907.                                                                                                                             | 1.5  | 21        |
| 57 | Tunable and highly reproducible surface-enhanced Raman scattering substrates made from large-scale<br>nanoparticle arrays based on periodically poled LiNbO3templates. Science and Technology of Advanced<br>Materials, 2013, 14, 055011.       | 2.8  | 20        |
| 58 | <i>In situ</i> Raman spectroscopy for characterization of the domain contributions to electrical and piezoelectric responses in Pb(Zr,Ti)O3 films. Applied Physics Letters, 2010, 97, .                                                         | 1.5  | 19        |
| 59 | 2D Inorganic Nanosheets: Twoâ€Dimensional Dielectric Nanosheets: Novel Nanoelectronics From<br>Nanocrystal Building Blocks (Adv. Mater. 2/2012). Advanced Materials, 2012, 24, 209-209.                                                         | 11.1 | 17        |
| 60 | Mn-doped LiNaGe <sub>4</sub> 0 <sub>9</sub> as a rare-earth free phosphor:<br>impact of Na-substitution on emission in tetragermanate phase. Journal of the Ceramic Society of<br>Japan, 2015, 123, 888-891.                                    | 0.5  | 17        |
| 61 | Highly (0001)-oriented Al-doped ZnO polycrystalline films on amorphous glass substrates. Journal of<br>Applied Physics, 2016, 120, 125302.                                                                                                      | 1.1  | 17        |
| 62 | Multifield Control of Domains in a Room-Temperature Multiferroic<br>0.85BiTi <sub>0.1</sub> Fe <sub>0.8</sub> Mg <sub>0.1</sub> O <sub>3</sub> –0.15CaTiO <sub>3</sub> Thin<br>Film. ACS Applied Materials & Interfaces, 2018, 10, 20712-20719. | 4.0  | 17        |
| 63 | Softer region at boundary of supercooled liquid–crystal in glassy fresnoite. Applied Physics Letters, 2009, 94, 241909.                                                                                                                         | 1.5  | 16        |
| 64 | A-Site-Modified Perovskite Nanosheets and Their Integration into High-κ Dielectric Thin Films with a<br>Clean Interface. Japanese Journal of Applied Physics, 2010, 49, 09MA01.                                                                 | 0.8  | 16        |
| 65 | Design of crystal structures, morphologies and functionalities of titanium oxide using water-soluble complexes and molecular control agents. Polymer Journal, 2015, 47, 78-83.                                                                  | 1.3  | 16        |
| 66 | Nitrogen doped ultrathin calcium/sodium niobate perovskite nanosheets for photocatalytic water oxidation. Solar Energy Materials and Solar Cells, 2020, 205, 110283.                                                                            | 3.0  | 16        |
| 67 | Solution-Based Fabrication of Perovskite Nanosheet Films and Their Dielectric Properties. Japanese<br>Journal of Applied Physics, 2009, 48, 09KA15.                                                                                             | 0.8  | 15        |
| 68 | Low-frequency Raman scattering in binary silicate glass: Boson peak frequency and its general expression. Journal of the Ceramic Society of Japan, 2013, 121, 1012-1014.                                                                        | 0.5  | 15        |
| 69 | Ferroelectric-assisted gold nanoparticles array for centimeter-scale highly reproducible SERS substrates. Scientific Reports, 2017, 7, 3630.                                                                                                    | 1.6  | 15        |
| 70 | Solution-Processed Two-Dimensional Metal Oxide Anticorrosion Nanocoating. Nano Letters, 2021, 21, 7044-7049.                                                                                                                                    | 4.5  | 15        |
| 71 | Transmission electron microscopy and <i>in situ</i> Raman studies of glassy sanbornite: An insight into nucleation trend and its relation to structural variation. Journal of Applied Physics, 2010, 108, .                                     | 1.1  | 14        |
| 72 | Chemical Preparation of Ferroelectric Mesoporous Barium Titanate Thin Films: Drastic Enhancement<br>of Curie Temperature Induced by Mesoporeâ€Đerived Strain. Chemistry - A European Journal, 2014, 20,<br>11283-11286.                         | 1.7  | 14        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Artificial design for new ferroelectrics using nanosheet-architectonics concept. Nanotechnology, 2015, 26, 244001.                                                                                                    | 1.3 | 14        |
| 74 | Layer-by-layer engineering of two-dimensional perovskite nanosheets for tailored microwave dielectrics. Applied Physics Express, 2017, 10, 091501.                                                                    | 1,1 | 14        |
| 75 | Tunable Chemical Coupling in Two-Dimensional van der Waals Electrostatic Heterostructures. ACS<br>Nano, 2019, 13, 11214-11223.                                                                                        | 7.3 | 13        |
| 76 | X-ray nanospectroscopic characterization of a molecularly thin ferromagnetic Ti1â^'xCoxO2 nanosheet. Applied Physics Letters, 2008, 93, 093112.                                                                       | 1.5 | 12        |
| 77 | Realization of graphene field-effect transistor with high-κ HCa2Nb3O10 nanoflake as top-gate<br>dielectric. Applied Physics Letters, 2013, 103, .                                                                     | 1.5 | 12        |
| 78 | Scalable Design of Twoâ€Dimensional Oxide Nanosheets for Construction of Ultrathin Multilayer<br>Nanocapacitor. Small, 2020, 16, 2003485.                                                                             | 5.2 | 12        |
| 79 | Rational Assembly of Two-Dimensional Perovskite Nanosheets as Building Blocks for New<br>Ferroelectrics. ACS Applied Materials & Interfaces, 2021, 13, 1783-1790.                                                     | 4.0 | 12        |
| 80 | Construction of Multilayer Films and Superlattice- and Mosaic-like Heterostructures of 2D Metal<br>Oxide Nanosheets via a Facile Spin-Coating Process. ACS Applied Materials & Interfaces, 2021, 13,<br>43258-43265.  | 4.0 | 12        |
| 81 | Solution-Based Fabrication of Perovskite Multilayers and Superlattices Using Nanosheet Process.<br>Japanese Journal of Applied Physics, 2011, 50, 09NA10.                                                             | 0.8 | 12        |
| 82 | Enhanced dielectric response induced by controlled morphology in rutile TiO <sub>2</sub><br>nanocrystals. Journal of the Ceramic Society of Japan, 2013, 121, 593-597.                                                | 0.5 | 11        |
| 83 | Origin of Extended UV Stability of 2D Atomic Layer Titania-Based Perovskite Solar Cells Unveiled by<br>Ultrafast Spectroscopy. ACS Applied Materials & Interfaces, 2019, 11, 21473-21480.                             | 4.0 | 11        |
| 84 | Synthesis of NaMoO3F and Na5W3O9F5 with Morphological Controllability in Non-Aqueous Solvents.<br>Inorganic Chemistry, 2020, 59, 10707-10716.                                                                         | 1.9 | 11        |
| 85 | Hydration of Sodium Cobalt Oxide. Chemistry of Materials, 2007, 19, 6073-6076.                                                                                                                                        | 3.2 | 10        |
| 86 | Crystallization of tungstenbronze-type Ba2NaNb5O15 in high-Nb2O5-content glass: An inelastic light<br>scattering study. Journal of Applied Physics, 2010, 108, 103519.                                                | 1.1 | 10        |
| 87 | Observation of ferroelectric domains in bismuth-layer-structured ferroelectrics using Raman<br>spectroscopy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology,<br>2005, 120, 95-99. | 1.7 | 9         |
| 88 | Solution-Based Fabrication of High-κ Dielectric Nanofilms Using Titania Nanosheets as a Building Block.<br>Japanese Journal of Applied Physics, 2007, 46, 6979.                                                       | 0.8 | 9         |
| 89 | Formation of spherulite and metastable phase in stoichiometric Ba2Si3O8 glass. Journal of the<br>Ceramic Society of Japan, 2010, 118, 955-958.                                                                        | 0.5 | 9         |
| 90 | Gigantic plasmon resonance effects on magneto-optical activity of molecularly thin ferromagnets near gold surfaces. Journal of Materials Chemistry C, 2013, 1, 2520.                                                  | 2.7 | 9         |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Successive phase transformation in stoichiometric glassy Li2Ge4O9: Isothermal and nonisothermal study. Journal of Applied Physics, 2013, 114, .                                                                       | 1.1 | 9         |
| 92  | Single crystal-like selection rules for unipolar-axis oriented tetragonal Pb(Zr,Ti)O3 thick epitaxial films. Applied Physics Letters, 2010, 97, 111901.                                                               | 1.5 | 8         |
| 93  | Soft-phonon mode observation in Li2Ge4O9 phase above room temperature. Applied Physics Letters, 2012, 100, 091902.                                                                                                    | 1.5 | 8         |
| 94  | High-temperature dielectric responses of molecularly-thin titania nanosheet. Journal of the Ceramic<br>Society of Japan, 2015, 123, 335-339.                                                                          | 0.5 | 8         |
| 95  | Thermally stable dielectric responses in uniaxially (001)-oriented CaBi4Ti4O15 nanofilms grown on a<br>Ca2Nb3O10â^ nanosheet seed layer. Scientific Reports, 2016, 6, 20713.                                          | 1.6 | 8         |
| 96  | High-temperature dielectric responses in all-nanosheet capacitors. Japanese Journal of Applied Physics, 2017, 56, 06GH09.                                                                                             | 0.8 | 8         |
| 97  | Crystallization and Morphology of Glassy Sanbornite. Key Engineering Materials, 0, 485, 301-304.                                                                                                                      | 0.4 | 7         |
| 98  | Oriented Film Growth of Ba <sub>1–<i>x</i></sub> Sr <sub><i>x</i></sub> TiO <sub>3</sub> Dielectrics<br>on Glass Substrates Using 2D Nanosheet Seed Layer. ACS Applied Materials & Interfaces, 2013, 5,<br>4592-4596. | 4.0 | 7         |
| 99  | Oxygen vacancies in PbTiO <sub>3</sub> thin films probed by resonant Raman spectroscopy. Journal of the Ceramic Society of Japan, 2013, 121, 598-601.                                                                 | 0.5 | 7         |
| 100 | Advanced capacitor technology based on two-dimensional nanosheets. Japanese Journal of Applied<br>Physics, 2016, 55, 1102A3.                                                                                          | 0.8 | 7         |
| 101 | Enhanced oxide-ion conductivity of solid-state electrolyte mesocrystals. Nanoscale, 2019, 11, 4523-4530.                                                                                                              | 2.8 | 7         |
| 102 | Resonant two-phonon Raman scattering as a probe of hole crystal formation inSr14â^'xCaxCu24O41.<br>Physical Review B, 2006, 74, .                                                                                     | 1.1 | 6         |
| 103 | Nanoscale Characterization of Domain Structures in Bi\$_{4}\$Ti\$_{3}\$O\$_{12}\$ Single Crystals Using Near-Field Raman Spectroscopy. Japanese Journal of Applied Physics, 2011, 50, 09NE10.                         | 0.8 | 6         |
| 104 | Solution-Based Fabrication of Perovskite Multilayers and Superlattices Using Nanosheet Process.<br>Japanese Journal of Applied Physics, 2011, 50, 09NA10.                                                             | 0.8 | 6         |
| 105 | Origin of thermally stable ferroelectricity in a porous barium titanate thin film synthesized through block copolymer templating. APL Materials, 2017, 5, .                                                           | 2.2 | 6         |
| 106 | Chemical Synthesis of Porous Barium Titanate Thin Film and Thermal Stabilization of Ferroelectric<br>Phase by Porosity-Induced Strain. Journal of Visualized Experiments, 2018, , .                                   | 0.2 | 6         |
| 107 | (Invited) New Dielectric Nanomaterials Fabricated from Nanosheet Technique. ECS Transactions, 2012,<br>45, 3-8.                                                                                                       | 0.3 | 5         |
| 108 | Investigation of PbTiO <sub>3</sub> thin films with reduced and re-oxidized treatment using<br>Raman spectroscopy. Journal of the Ceramic Society of Japan, 2013, 121, 859-862.                                       | 0.5 | 5         |

MINORU OSADA

| #   | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Self-Sensitization and Photo-Polymerization of Diacetylene Molecules Self-Assembled on a<br>Hexagonal-Boron Nitride Nanosheet. Polymers, 2018, 10, 206.                                                                             | 2.0 | 5         |
| 110 | Impacts of intrinsic defects on luminescence properties of CuAlS2. Applied Physics Letters, 2006, 89, 221117.                                                                                                                       | 1.5 | 4         |
| 111 | Low-frequency inelastic light scattering of zincogermanate glass in supercooledliquid regime.<br>Journal of Applied Physics, 2011, 109, 126105.                                                                                     | 1.1 | 4         |
| 112 | Effect of annealing at maximum nucleation temperature on boson peak in lithium-disilicate glass.<br>Journal of the Ceramic Society of Japan, 2012, 120, 256-258.                                                                    | 0.5 | 4         |
| 113 | NANOCRYSTALLIZATION AND OPTICAL PROPERTY OF WILLEMITE-TYPE SEMICONDUCTIVE Zn2GeO4 IN GLASS.<br>Functional Materials Letters, 2012, 05, 1260008.                                                                                     | 0.7 | 4         |
| 114 | Spectroscopically and thermometrically observed boson peaks in oxide glass system. Japanese Journal of Applied Physics, 2015, 54, 088003.                                                                                           | 0.8 | 4         |
| 115 | Synthesis of green emission upconversion phosphor nanosheets (LaNb2O7) doped with Er3+ and Yb3+.<br>Journal of Luminescence, 2016, 173, 130-134.                                                                                    | 1.5 | 3         |
| 116 | Magneto-Optical Effects in Superlattice Assemblies of Ferromagnetic Nanosheets. Key Engineering<br>Materials, 2007, 350, 15-18.                                                                                                     | 0.4 | 2         |
| 117 | Polarized Raman Study for Epitaxial PZT Thick Film with the Mixture Orientation of (100)/(001). Key Engineering Materials, 0, 421-422, 99-102.                                                                                      | 0.4 | 2         |
| 118 | Inelastic light scattering from nanocrystallizing niobiotellurite glass: an insight into the metastable<br>phase and phase-transformation dynamics. Journal of the Ceramic Society of Japan, 2010, 118, 814-818.                    | 0.5 | 2         |
| 119 | Chemical Nanomanipulation of Two-Dimensional Nanosheets and Its Applications. , 0, , .                                                                                                                                              |     | 2         |
| 120 | Fabrication and Properties of Microcapacitors with a One-nanometer-thick Single Ti0.87O2 Nanosheet.<br>Chemistry Letters, 2014, 43, 307-309.                                                                                        | 0.7 | 2         |
| 121 | Facile titania nanocoating using single droplet assembly of 2D nanosheets. Journal of the Ceramic<br>Society of Japan, 2021, 129, 359-364.                                                                                          | 0.5 | 2         |
| 122 | Nanoscale Characterization of Domain Structures in Bi4Ti3O12Single Crystals Using Near-Field Raman<br>Spectroscopy. Japanese Journal of Applied Physics, 2011, 50, 09NE10.                                                          | 0.8 | 2         |
| 123 | Antiferromagnetic Ordering Coupled with Phonon Mode Anomalies in Rare-Earth Cuprate NdCu2O4,<br>Probed by Nuclear Quadrupole Resonance and Raman Spectroscopy. Journal of the Physical Society of<br>Japan, 2005, 74, 2076-2081.    | 0.7 | 1         |
| 124 | Nanoâ€Materials Design for Highâ€ <i>T</i> <sub>C</sub> Ferromagnets of<br><scp><scp>Ti<sub>1â€x</sub>Co<sub>x</sub>O<sub>2</sub></scp></scp> Nanosheets. International<br>Journal of Applied Ceramic Technology, 2012, 9, 936-941. | 1.1 | 1         |
| 125 | Identification of the Occupation Site of Dy- or Y-Substituted PZT Films and the Correlation Between Occupation Site and Ferroelectric Property. Integrated Ferroelectrics, 2013, 141, 1-8.                                          | 0.3 | 1         |
| 126 | Transmission electron microscopy and in situ Raman studies of glassy sanbornite: An insight into nucleation trend and its relation to structural variation. , 0, .                                                                  |     | 1         |

8

MINORU OSADA

| #   | Article                                                                                                                                                                                                                                                                                    | IF              | CITATIONS              |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|
| 127 | New Perovskite Nanomaterials and Their Integrations into High-k Dielectrics. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2011, 2011, 000072-000077.                                                                                                                     | 0.2             | 1                      |
| 128 | Strategic Smart Process for the Fabrication of Ultimate Functional ZnO Materials with Highly Transparent Conductivity. Journal of Smart Processing, 2013, 2, 236-244.                                                                                                                      | 0.0             | 1                      |
| 129 | The Effect of Varying Ca-Content on the Structure of High-T <sub>c</sub> Superconductor (Ca <sub>x</sub> La <sub>1-x</sub> )(Ba <sub>1.75-x</sub> La <sub>0.25+x&lt; (x = 0.5, 0.6, and 0.8) Studied by Neutron Powder Diffraction. Materials Science Forum, 2004, 443-444, 361-364.</sub> | t;/sub>)<br>0.3 | Cu <sub< td=""></sub<> |
| 130 | Phase Control in High-Temperature Superconductors and Novel Fabrication Procedure for Superconducting Components. Key Engineering Materials, 2004, 269, 91-94.                                                                                                                             | 0.4             | 0                      |
| 131 | Self Assemble Synthesis of Potassium Niobate at Room Temperature. Key Engineering Materials, 2006, 320, 7-10.                                                                                                                                                                              | 0.4             | 0                      |
| 132 | Photoconducting Properties in Oxygen-Deficient<br>Bi <sub>4</sub> Ti <sub>3</sub> O <sub>12</sub> . Key Engineering<br>Materials, 2006, 301, 7-10.                                                                                                                                         | 0.4             | 0                      |
| 133 | Exciton-Phonon Interaction in CuAlS <sub>2</sub> Powders. Advanced Materials Research, 2006, 11-12, 175-178.                                                                                                                                                                               | 0.3             | ο                      |
| 134 | Photoinduced Nanodots in<br>Bi <sub>2</sub> Sr <sub>2</sub> CaCu <sub>2</sub> O <sub>8+d</sub> .<br>Key Engineering Materials, 2006, 320, 167-170.                                                                                                                                         | 0.4             | 0                      |
| 135 | Synthesis of Complex Perovskite Oxides via Nanosheets Process. Key Engineering Materials, 2007, 350, 55-58.                                                                                                                                                                                | 0.4             | 0                      |
| 136 | Ferromagnetic Properties in Co-Substituted Titania Nanosheets. Key Engineering Materials, 2008, 388, 119-122.                                                                                                                                                                              | 0.4             | 0                      |
| 137 | Investigation of Oxygen Vacancies in Micro-Patterned PZT Thin Films Using Raman Spectroscopy. Key<br>Engineering Materials, 2009, 421-422, 135-138.                                                                                                                                        | 0.4             | ο                      |
| 138 | Focus on innovation in ceramics research in East Asia. Science and Technology of Advanced Materials, 2010, 11, 040301.                                                                                                                                                                     | 2.8             | 0                      |
| 139 | Low-Frequency Inelastic Light Scattering of Glassy<br>Ba <sub>2</sub> TiGe <sub>2</sub> O <sub>8</sub> during Heating<br>Process. Key Engineering Materials, 0, 445, 225-228.                                                                                                              | 0.4             | 0                      |
| 140 | Fabrication of Artificial Superlattices Using Perovskite Nanosheets. Key Engineering Materials, 2011, 485, 321-324.                                                                                                                                                                        | 0.4             | 0                      |
| 141 | Self-assembly of oxide nanosheets: precise structural control and its applications. , 2012, , 618-620.                                                                                                                                                                                     |                 | 0                      |
| 142 | Crystallization of Tungstenbronze Phase and its Inelastic Light Scattering in Niobiophosphate-System<br>Glass. Key Engineering Materials, 0, 566, 306-309.                                                                                                                                 | 0.4             | 0                      |
| 143 | Nanosheet-Based Electronics. Nanostructure Science and Technology, 2017, , 347-356.                                                                                                                                                                                                        | 0.1             | 0                      |
| 144 | Self-Assembly of Oxide Nanosheets: Precise Structural Control and Its Applications. , 2018, , 797-799.                                                                                                                                                                                     |                 | 0                      |

| #   | Article                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Atomic Layer Technology Based on 2D Inorganic Nanosheets. Materia Japan, 2021, 60, 628-633.                                                                                                | 0.1 | ο         |
| 146 | Structures and Physical Properties in Oxide Nanosheets. Nihon Kessho Gakkaishi, 2012, 54, 352-358.                                                                                         | 0.0 | 0         |
| 147 | Nanosheet Coating Process. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2014, 83, 95-99.                                                                                       | 0.0 | Ο         |
| 148 | Controlled Assembly of Inorganic Nanosheets and Its Application to High-Performance Metamaterials.<br>Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2019, 70, 355-358. | 0.1 | 0         |