Pietro Amodeo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5477575/publications.pdf

Version: 2024-02-01

107 papers 2,547 citations

30 h-index 243625 44 g-index

117 all docs

117 docs citations

117 times ranked 3257 citing authors

#	Article	IF	CITATIONS
1	Taste and Smell: A Unifying Chemosensory Theory. Quarterly Review of Biology, 2022, 97, 69-94.	0.1	12
2	2-Pentadecyl-2-oxazoline ameliorates memory impairment and depression-like behaviour in neuropathic mice: possible role of adrenergic alpha2- and H3 histamine autoreceptors. Molecular Brain, 2021, 14, 28.	2.6	13
3	N-palmitoyl-D-glucosamine, A Natural Monosaccharide-Based Glycolipid, Inhibits TLR4 and Prevents LPS-Induced Inflammation and Neuropathic Pain in Mice. International Journal of Molecular Sciences, 2021, 22, 1491.	4.1	19
4	The (Poly)Pharmacology of Cannabidiol in Neurological and Neuropsychiatric Disorders: Molecular Mechanisms and Targets. International Journal of Molecular Sciences, 2021, 22, 4876.	4.1	37
5	The Combined Effect of Branching and Elongation on the Bioactivity Profile of Phytocannabinoids. Part I: Thermo-TRPs. Biomedicines, 2021, 9, 1070.	3.2	3
6	Identification and Characterization of Cannabidiol as an OX1R Antagonist by Computational and In Vitro Functional Validation. Biomolecules, 2021, 11, 1134.	4.0	8
7	Design, Synthesis and In Vitro Experimental Validation of Novel TRPV4 Antagonists Inspired by Labdane Diterpenes. Marine Drugs, 2020, 18, 519.	4.6	11
8	Cannabitwinol, a Dimeric Phytocannabinoid from Hemp, <i>Cannabis sativa</i> L., Is a Selective Thermo-TRP Modulator. Journal of Natural Products, 2020, 83, 2727-2736.	3.0	19
9	Identification of the hydantoin alkaloids parazoanthines as novel CXCR4 antagonists by computational and in vitro functional characterization. Bioorganic Chemistry, 2020, 105, 104337.	4.1	4
10	Discovery of a Remarkable Methyl Shift Effect in the Vanilloid Activity of Triterpene Amides. Journal of Natural Products, 2020, 83, 3476-3481.	3.0	2
11	Identification and Characterization of Cannabimovone, a Cannabinoid from Cannabis sativa, as a Novel PPARÎ ³ Agonist via a Combined Computational and Functional Study. Molecules, 2020, 25, 1119.	3 . 8	20
12	Potent Cytotoxic Analogs of Amphidinolides from the Atlantic Octocoral Stragulum bicolor. Marine Drugs, 2019, 17, 58.	4.6	10
13	Can Intelligence Gradually Evolve in a Shell?. Trends in Ecology and Evolution, 2019, 34, 689-690.	8.7	3
14	In Silico Identification and Experimental Validation of (â^')-Muqubilin A, a Marine Norterpene Peroxide, as PPARα/γ-RXRα Agonist and RARα Positive Allosteric Modulator. Marine Drugs, 2019, 17, 110.	4.6	11
15	FAAH-Catalyzed C–C Bond Cleavage of a New Multitarget Analgesic Drug. ACS Chemical Neuroscience, 2019, 10, 424-437.	3.5	2
16	Identification and characterization of phytocannabinoids as novel dual PPARÎ \pm / \hat{l}^3 agonists by a computational and in vitro experimental approach. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 586-597.	2.4	55
17	Patatin-like lipolytic acyl hydrolases and galactolipid metabolism in marine diatoms of the genus Pseudo-nitzschia. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 181-190.	2.4	13
18	<i>In Silico</i> Identification and Experimental Validation of Novel Anti-Alzheimer's Multitargeted Ligands from a Marine Source Featuring a "2-Aminoimidazole plus Aromatic Group―Scaffold. ACS Chemical Neuroscience, 2018, 9, 1290-1303.	3 . 5	14

#	Article	IF	CITATIONS
19	Spectroscopy data of ceftriaxone-lysozyme interaction and computational studies. Data in Brief, 2018, 18, 1808-1818.	1.0	2
20	Chaperone-like effect of ceftriaxone on HEWL aggregation: A spectroscopic and computational study. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1317-1326.	2.4	6
21	Fishing for Targets of Alien Metabolites: A Novel Peroxisome Proliferator-Activated Receptor (PPAR) Agonist from a Marine Pest. Marine Drugs, 2018, 16, 431.	4.6	27
22	Elongation of the Hydrophobic Chain as a Molecular Switch: Discovery of Capsaicin Derivatives and Endogenous Lipids as Potent Transient Receptor Potential Vanilloid Channel 2 Antagonists. Journal of Medicinal Chemistry, 2018, 61, 8255-8281.	6.4	11
23	The Suitability of Fishes as Models for Studying Appetitive Behavior in Vertebrates. Results and Problems in Cell Differentiation, 2018, 65, 423-438.	0.7	4
24	Structure–activity relationships of fraxamoside as an unusual xanthine oxidase inhibitor. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 345-354.	5. 2	21
25	Taste and smell in aquatic and terrestrial environments. Natural Product Reports, 2017, 34, 496-513.	10.3	45
26	Isolation of Chamigrene Sesquiterpenes and Absolute Configuration of Isoobtusadiene from the Brittle Star <i>Ophionereis reticulata</i>). Journal of Natural Products, 2017, 80, 3049-3053.	3.0	8
27	Tetrahydroisoquinoline-Derived Urea and 2,5-Diketopiperazine Derivatives as Selective Antagonists of the Transient Receptor Potential Melastatin 8 (TRPM8) Channel Receptor and Antiprostate Cancer Agents. Journal of Medicinal Chemistry, 2016, 59, 5661-5683.	6.4	29
28	Interactions of GFAP with ceftriaxone and phenytoin: SRCD and molecular docking and dynamic simulation. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2239-2248.	2.4	15
29	Air oxidation method employed for the disulfide bond formation of natural and synthetic peptides. Amino Acids, 2015, 47, 1507-1515.	2.7	24
30	Self-Inclusion Complexes of Monofunctionalized Beta-Cyclodextrins as Host–Guest Interaction Model Systems and Simple and Sensitive Testbeds for Implicit Solvation Methods. , 2015, , 271-296.		0
31	P01.16 * MICROGLIA/MACROPHAGES AS CELLULAR TARGET OF NOVEL CXCR4 ANTAGONIST IN A GLIOMA MODEL. Neuro-Oncology, 2014, 16, ii30-ii30.	1.2	0
32	Structure–activity relationships and molecular modelling of new 5-arylidene-4-thiazolidinone derivatives as aldose reductase inhibitors and potential anti-inflammatory agents. European Journal of Medicinal Chemistry, 2014, 81, 1-14.	5 . 5	63
33	Sensing marine biomolecules: smell, taste, and the evolutionary transition from aquatic to terrestrial life. Frontiers in Chemistry, 2014, 2, 92.	3.6	50
34	Minimalist Hybrid Ligand/Receptor-Based Pharmacophore Model for CXCR4 Applied to a Small-Library of Marine Natural Products Led to the Identification of Phidianidine A as a New CXCR4 Ligand Exhibiting Antagonist Activity. ACS Chemical Biology, 2013, 8, 2762-2770.	3.4	54
35	Preclinical Development of a Novel Class of CXCR4 Antagonist Impairing Solid Tumors Growth and Metastases. PLoS ONE, 2013, 8, e74548.	2.5	76
36	332 A New CXCR4 Receptor Antagonist – Effects on Cell Growth and Tumor Microenvironment in a Glioma Model. European Journal of Cancer, 2012, 48, S81.	2.8	0

#	Article	IF	Citations
37	Physical and Water Sorption Properties of Chemically Modified Pectin with an Environmentally Friendly Process. Biomacromolecules, 2011, 12, 2311-2318.	5.4	36
38	Chemical modification of pectin: environmental friendly process for new potential material development. Polymer Chemistry, 2011, 2, 800.	3.9	43
39	Probing membrane topology of the antimicrobial peptide distinctin by solid-state NMR spectroscopy in zwitterionic and charged lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 34-40.	2.6	28
40	Computational Methods in Mass Spectrometry-Based Protein 3D Studies. , 2011, , .		0
41	Neuroglobin–prion protein interaction: what's the function?. Journal of Peptide Science, 2011, 17, 387-391.	1.4	14
42	Converting the Highly Amyloidogenic Human Calcitonin into a Powerful Fibril Inhibitor by Three-dimensional Structure Homology with a Non-amyloidogenic Analogue. Journal of Biological Chemistry, 2011, 286, 2707-2718.	3.4	29
43	Abstract 394: Rapid and persistant neutrophil mobilization by novel CXCR4 peptide antagonists. , 2011, , .		0
44	Rare Casbane Diterpenoids from the Hainan Soft Coral <i>Sinularia depressa</i> . Journal of Natural Products, 2010, 73, 133-138.	3.0	70
45	A SPR strategy for high-throughput ligand screenings based on synthetic peptides mimicking a selected subdomain of the target protein: A proof of concept on HER2 receptor. Bioorganic and Medicinal Chemistry, 2009, 17, 7015-7020.	3.0	20
46	Structural Analysis of BldR from Sulfolobus solfataricus Provides Insights into the Molecular Basis of Transcriptional Activation in Archaea by MarR Family Proteins. Journal of Molecular Biology, 2009, 388, 559-569.	4.2	31
47	Structural Features of Distinctin Affecting Peptide Biological and Biochemical Properties. Biochemistry, 2008, 47, 7888-7899.	2.5	29
48	Structure and Absolute Stereochemistry of Syphonoside, a Unique Macrocyclic Glycoterpenoid from Marine Organisms. Journal of Organic Chemistry, 2007, 72, 5625-5630.	3.2	31
49	Molecular modeling study for the binding of zonisamide and topiramate to the human mitochondrial carbonic anhydrase isoform VA. Bioorganic and Medicinal Chemistry, 2007, 15, 4152-4158.	3.0	37
50	Structural characterization of the functional regions in the archaeal protein Sso7d. Proteins: Structure, Function and Bioinformatics, 2007, 67, 189-197.	2.6	8
51	Structural Features in EIAV NCp11:  A Lentivirus Nucleocapsid Protein with a Short Linker. Biochemistry, 2006, 45, 5517-5526.	2.5	17
52	Structural Requirements for Proinflammatory Activity of Porin P2 Loop 7 from Haemophilus influenzae. Biochemistry, 2006, 45, 4491-4501.	2.5	17
53	Metal Ion Substitution in the Catalytic Site Greatly Affects the Binding of Sulfhydryl-Containing Compounds to Leucyl Aminopeptidase,. Biochemistry, 2006, 45, 3226-3234.	2.5	34
54	Structural Determinants of Salmon Calcitonin Bioactivity. Journal of Biological Chemistry, 2006, 281, 24193-24203.	3.4	50

#	Article	IF	Citations
55	Zofenoprilat-Glutathione Mixed Disulfide as a Specific S-Thiolating Agent of Bovine Lens Aldose Reductase. Antioxidants and Redox Signaling, 2005, 7, 841-848.	5.4	2
56	A folding-dependent mechanism of antimicrobial peptide resistance to degradation unveiled by solution structure of distinctin. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6309-6314.	7.1	68
57	The crystal structure of the (Zn/Zn)bLAP/zofenoprilat complex. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c215-c216.	0.3	0
58	Effects induced by mono- and divalent cations on protein regions responsible for thermal adaptation in �-glycosidase from Sulfolobus solfataricus. European Biophysics Journal, 2004, 33, 38-49.	2.2	5
59	New antitumour cyclic astin analogues: synthesis, conformation and bioactivity. Journal of Peptide Science, 2004, 10, 92-102.	1.4	18
60	Influence of conformational flexibility on biological activity in cyclic astin analogues. Biopolymers, 2004, 76, 477-484.	2.4	8
61	Structure, conformation and biological activity of a novel lipodepsipeptide from Pseudomonas corrugata: cormycin A1. Biochemical Journal, 2004, 384, 25-36.	3.7	86
62	New role for leucyl aminopeptidase in glutathione turnover. Biochemical Journal, 2004, 378, 35-44.	3.7	58
63	Conformational Features of Human Melanin-Concentrating Hormone: An NMR and Computational Analysis. ChemBioChem, 2003, 4, 73-81.	2.6	8
64	A left-handed α-helix containing both L- and D-amino acids: The solution structure of the antimicrobial lipodepsipeptide tolaasin. Proteins: Structure, Function and Bioinformatics, 2003, 52, 534-543.	2.6	38
65	Probing the Dimeric Structure of Porcine Aminoacylase 1 by Mass Spectrometric and Modeling Procedures. Biochemistry, 2003, 42, 4430-4443.	2.5	47
66	SDS-resistant Active and Thermostable Dimers Are Obtained from the Dissociation of Homotetrameric β-Glycosidase from Hyperthermophilic Sulfolobus solfataricus in SDS. Journal of Biological Chemistry, 2002, 277, 44050-44060.	3.4	43
67	Solution structure of nociceptin peptides. Journal of Peptide Science, 2002, 8, 497-509.	1.4	12
68	Thiol/Disulfide Interconversion in Bovine Lens Aldose Reductase Induced by Intermediates of Glutathione Turnoverâ€. Biochemistry, 2001, 40, 11985-11994.	2.5	16
69	Kinase recognition by calmodulin: modeling the interaction with the autoinhibitory region of human cardiac titin kinase11Edited by J. Thornton. Journal of Molecular Biology, 2001, 306, 81-95.	4.2	8
70	Modularity and homology: modelling of the titin type I modules and their interfaces. Journal of Molecular Biology, 2001, 311, 283-296.	4.2	29
71	Modulation of aldose reductase activity through S-thiolation by physiological thiols. Chemico-Biological Interactions, 2001, 130-132, 597-608.	4.0	19
72	Pain peptides. Solution structure of orphanin FQ2. FEBS Letters, 2000, 473, 157-160.	2.8	5

#	Article	IF	Citations
73	Single solution phase conformation of new antiproliferative cembranes. Tetrahedron, 1999, 55, 1143-1152.	1.9	21
74	Conformational flexibility in calcitonin: the dynamic properties of human and salmon calcitonin in solution. Journal of Biomolecular NMR, 1999, 13, 161-174.	2.8	34
75	Exploring protein interiors: The role of a buried histidine in the KH module fold. Proteins: Structure, Function and Bioinformatics, 1999, 34, 484-496.	2.6	13
76	A New Cacospongionolide Derivative from the SpongeFasciospongia cavernosa. Journal of Natural Products, 1999, 62, 1316-1318.	3.0	29
77	Exploring protein interiors: The role of a buried histidine in the KH module fold., 1999, 34, 484.		1
78	Conformational sampling of bioactive conformers: a low-temperature NMR study of 15N-Leu–enkephalin. , 1998, 4, 253-265.		25
79	Solution structure of human calcitonin in membrane-mimetic environment: The role of the amphipathic helix. Proteins: Structure, Function and Bioinformatics, 1998, 32, 314-323.	2.6	62
80	Topology of the calmodulin-melittin complex 1 1Edited by P.E. Wright. Journal of Molecular Biology, 1998, 277, 945-958.	4.2	90
81	Solution structure of human calcitonin in membraneâ€mimetic environment: The role of the amphipathic helix. Proteins: Structure, Function and Bioinformatics, 1998, 32, 314-323.	2.6	1
82	Solution structure of human calcitonin in membrane-mimetic environment: the role of the amphipathic helix. Proteins: Structure, Function and Bioinformatics, 1998, 32, 314-23.	2.6	21
83	Design of $\hat{l}\frac{1}{4}$ selective opioid dipeptide antagonists. FEBS Letters, 1997, 417, 141-144.	2.8	27
84	A new triple-stranded \hat{l} ±-helical bundle in solution: the assembling of the cytosolic tail of MHC-associated invariant chain. Structure, 1997, 5, 1453-1464.	3.3	19
85	Î-Selective Opioid Peptides Containing a Single Aromatic Residue in the Message Domain: An NMR Conformational Analysis. Journal of Peptide Science, 1996, 2, 290-308.	1.4	15
86	Assignment and Secondary-Structure Determination of Monomeric Bovine Seminal Ribonuclease Employing Computer-Assisted Evaluation of Homonuclear Three-Dimensional 1H-NMR Spectra. FEBS Journal, 1995, 229, 494-502.	0.2	4
87	Conformational analysis of potent and very selective \hat{l} opioid dipeptide antagonists. FEBS Letters, 1995, 377, 363-367.	2.8	19
88	Conformational analysis of deltorphin I analogs containing alpha disubstituted residues in the message domain., 1995,, 630-631.		4
89	Conversion of Enkephalin and Dermorphin into delta-Selective Opioid Antagonists by Single-Residue Substitution. FEBS Journal, 1994, 224, 241-247.	0.2	48
90	Selective Opioid Dipeptides. Biochemical and Biophysical Research Communications, 1994, 198, 933-939.	2.1	89

#	Article	IF	Citations
91	Multiple Conformations and Proline cis-trans Isomerization in Salmon Calcitonin: A Combined Nuclear Magnetic Resonance, Distance Geometry, and Molecular Mechanics Study. Biochemistry, 1994, 33, 10754-10762.	2.5	40
92	Solution conformation of câ€[Glnâ€Trpâ€Pheâ€Glyâ€Leuâ€Met], a NKâ€2 tachykinin antagonist. International Jor of Peptide and Protein Research, 1994, 44, 556-561.	urnal 0.1	3
93	Synthesis, biological activity, and conformational analysis of [pGlu6, N-MePhe8, Aib9] substance P (6-11): A selective agonist for the NK-3 receptor. Biopolymers, 1993, 33, 915-926.	2.4	21
94	Solution Conformation of CCK9, a Cholecystokinin Analog. Biochemical and Biophysical Research Communications, 1993, 190, 741-746.	2.1	23
95	Solution Structure of Casokefamide. Biochemical and Biophysical Research Communications, 1993, 191, 853-859.	2.1	2
96	A new general form of molecular force fields. Application to intra- and interresidue interactions in peptides. Journal of the American Chemical Society, 1992, 114, 9085-9093.	13.7	35
97	Solution conformation of tuftsin. Biochemistry, 1992, 31, 9581-9586.	2.5	16
98	Structural determination of the active site of a sweet protein A1H NMR investigation of pMNEI. FEBS Letters, 1992, 310, 27-30.	2.8	67
99	Conformational analysis of an opioid peptide in solvent media that mimic cytoplasm viscosity. Biopolymers, 1992, 32, 367-372.	2.4	34
100	Conformation activity relationship of deltorphin I: A NMR study in viscous media., 1992,, 115-116.		1
101	Solution structure of deltorphin I at 265 K: a quantitative NMR study. Peptide Research, 1992, 5, 48-55.	0.2	4
102	New insights on ?/? selectivity of opioid peptides: Conformational analysis of deltorphin analogues. Biopolymers, 1991, 31, 751-760.	2.4	44
103	A microscopic approach to the structure and thermodynamic properties of peptides and proteins. Thermochimica Acta, 1990, 162, 141-154.	2.7	4
104	Stability and structure of formamide and urea dimers in aqueous solution. A theoretical study. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 621.	1.0	50
105	Nonempirical cluster model study of the on-top chemisorption of fluorine and chlorine on $C(111)$ surface. Solid State Communications, 1988, 65, 945-947.	1.9	1
106	Thermodynamic and spectroscopic studies on the protonation and Cu2+ complex formation of a synthetic amino diacid: (3-aminopropyl)malonic acid. Journal of the Chemical Society Dalton Transactions, 1988, , 1273.	1.1	3
107	A molecular dynamics study of associations in solution. an NPT simulation of the urea dimer in water. Chemical Physics Letters, 1987, 140, 401-405.	2.6	21