Chun-Feng Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/547734/publications.pdf

Version: 2024-02-01

315616 279701 1,615 47 23 38 citations h-index g-index papers 51 51 51 2286 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Curcumin Suppresses Lung Cancer Stem Cells via Inhibiting Wnt/ \hat{l}^2 -catenin and Sonic Hedgehog Pathways. Phytotherapy Research, 2017, 31, 680-688.	2.8	130
2	Wnt/β-catenin pathway mediates (−)-Epigallocatechin-3-gallate (EGCG) inhibition of lung cancer stem cells. Biochemical and Biophysical Research Communications, 2017, 482, 15-21.	1.0	102
3	(â^')-Epigallocatechin-3-Gallate Inhibits Colorectal Cancer Stem Cells by Suppressing Wnt/ \hat{l}^2 -Catenin Pathway. Nutrients, 2017, 9, 572.	1.7	94
4	Anti-inflammatory Activity of Magnesium Isoglycyrrhizinate Through Inhibition of Phospholipase A2/Arachidonic Acid Pathway. Inflammation, 2015, 38, 1639-1648.	1.7	83
5	TGF- \hat{l}^2 1/IL-11/MEK/ERK signaling mediates senescence-associated pulmonary fibrosis in a stress-induced premature senescence model of Bmi-1 deficiency. Experimental and Molecular Medicine, 2020, 52, 130-151.	3.2	78
6	Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer. Journal of Experimental and Clinical Cancer Research, 2021, 40, 266.	3.5	76
7	Medium-chain triglyceride ameliorates insulin resistance and inflammation in high fat diet-induced obese mice. European Journal of Nutrition, 2016, 55, 931-940.	1.8	69
8	miR-19 targeting of GSK3 \hat{l}^2 mediates sulforaphane suppression of lung cancer stem cells. Journal of Nutritional Biochemistry, 2017, 44, 80-91.	1.9	67
9	Magnesium isoglycyrrhizinate suppresses LPS-induced inflammation and oxidative stress through inhibiting NF-κB and MAPK pathways in RAW264.7 cells. Bioorganic and Medicinal Chemistry, 2019, 27, 516-524.	1.4	60
10	Curcumin attenuates BPA-induced insulin resistance in HepG2 cells through suppression of JNK/p38 pathways. Toxicology Letters, 2017, 272, 75-83.	0.4	55
11	Mechanism investigation on Bisphenol S-induced oxidative stress and inflammation in murine RAW264.7 cells: The role of NLRP3 inflammasome, TLR4, Nrf2 and MAPK. Journal of Hazardous Materials, 2020, 394, 122549.	6.5	55
12	Phthalates promote prostate cancer cell proliferation through activation of ERK5 and p38. Environmental Toxicology and Pharmacology, 2018, 63, 29-33.	2.0	51
13	Diallyl Trisulfide inhibits breast cancer stem cells via suppression of Wnt/βâ€catenin pathway. Journal of Cellular Biochemistry, 2018, 119, 4134-4141.	1.2	48
14	Phenethyl isothiocyanate inhibits colorectal cancer stem cells by suppressing Wnt/l²â€catenin pathway. Phytotherapy Research, 2018, 32, 2447-2455.	2.8	43
15	Modulation of miRâ€34a in curcuminâ€induced antiproliferation of prostate cancer cells. Journal of Cellular Biochemistry, 2019, 120, 15616-15624.	1.2	43
16	Anti-aging Effect of Transplanted Amniotic Membrane Mesenchymal Stem Cells in a Premature Aging Model of Bmi-1 Deficiency. Scientific Reports, 2015, 5, 13975.	1.6	41
17	Wnt/ \hat{l}^2 -catenin signaling mediates the suppressive effects of diallyl trisulfide on colorectal cancer stem cells. Cancer Chemotherapy and Pharmacology, 2018, 81, 969-977.	1.1	34
18	Modulation of autophagy in the protective effect of resveratrol on PM2.5â€induced pulmonary oxidative injury in mice. Phytotherapy Research, 2018, 32, 2480-2486.	2.8	31

#	Article	IF	Citations
19	Sulforaphane inhibits gastric cancer stem cells via suppressing sonic hedgehog pathway. International Journal of Food Sciences and Nutrition, 2019, 70, 570-578.	1.3	31
20	Sulforaphane Inhibits the Acquisition of Tobacco Smoke-Induced Lung Cancer Stem Cell-Like Properties <i>via</i> the IL-6/î"Np63î±/Notch Axis. Theranostics, 2019, 9, 4827-4840.	4.6	30
21	Curcumin Suppresses MAPK Pathways to Reverse Tobacco Smoke-induced Gastric Epithelial-Mesenchymal Transition in Mice. Phytotherapy Research, 2015, 29, 1665-1671.	2.8	27
22	Folic Acid Protected Neural Cells Against Aluminum-Maltolate-Induced Apoptosis by Preventing miR-19 Downregulation. Neurochemical Research, 2016, 41, 2110-2118.	1.6	27
23	Butyl benzyl phthalate promotes prostate cancer cell proliferation through miR-34a downregulation. Toxicology in Vitro, 2019, 54, 82-88.	1.1	25
24	Effects of Curcumin on Tobacco Smoke-induced Hepatic MAPK Pathway Activation and Epithelial-Mesenchymal TransitionIn Vivo. Phytotherapy Research, 2017, 31, 1230-1239.	2.8	23
25	TAp63α targeting of Lgr5 mediates colorectal cancer stem cell properties and sulforaphane inhibition. Oncogenesis, 2020, 9, 89.	2.1	23
26	Wnt $\hat{\mathbb{I}}^2$ -catenin modulates chronic tobacco smoke exposure-induced acquisition of pulmonary cancer stem cell properties and diallyl trisulfide intervention. Toxicology Letters, 2018, 291, 70-76.	0.4	22
27	Curcumin suppresses JNK pathway to attenuate BPA-induced insulin resistance in LO2 cells. Biomedicine and Pharmacotherapy, 2018, 97, 1538-1543.	2.5	22
28	miR-19 targeting of PTEN mediates butyl benzyl phthalate-induced proliferation in both ER(+) and ER(â^') breast cancer cells. Toxicology Letters, 2018, 295, 124-133.	0.4	22
29	Modulation of miR-19 in Aluminum-Induced Neural Cell Apoptosis. Journal of Alzheimer's Disease, 2016, 50, 1149-1162.	1.2	21
30	Tobacco smoke induced hepatic cancer stem cell-like properties through IL-33/p38 pathway. Journal of Experimental and Clinical Cancer Research, 2019, 38, 39.	3.5	21
31	Sulforaphane inhibits epithelial–mesenchymal transition by activating extracellular signal-regulated kinase 5 in lung cancer cells. Journal of Nutritional Biochemistry, 2019, 72, 108219.	1.9	19
32	Resveratrol relieves particulate matter (mean diameter < 2.5 μm)â€nduced oxidative injury of lung cells through attenuation of autophagy deregulation. Journal of Applied Toxicology, 2018, 38, 1251-1261.	1.4	17
33	ERK5 negatively regulates tobacco smoke-induced pulmonary epithelial-mesenchymal transition. Oncotarget, 2015, 6, 19605-19618.	0.8	15
34	Curcumin reverses tobacco smoke‑induced epithelial‑mesenchymal transition by suppressing the MAPK pathway in the lungs of mice. Molecular Medicine Reports, 2018, 17, 2019-2025.	1.1	12
35	TAp63 $\hat{l}\pm$ Is Involved in Tobacco Smoke-Induced Lung Cancer EMT and the Anti-cancer Activity of Curcumin via miR-19 Transcriptional Suppression. Frontiers in Cell and Developmental Biology, 2021, 9, 645402.	1.8	12
36	Apatinib Suppresses Gastric Cancer Stem Cells Properties by Inhibiting the Sonic Hedgehog Pathway. Frontiers in Cell and Developmental Biology, 2021, 9, 679806.	1.8	11

#	Article	IF	Citations
37	Bmiâ€1â€RING1B prevents GATA4â€dependent senescenceâ€associated pathological cardiac hypertrophy by promoting autophagic degradation of GATA4. Clinical and Translational Medicine, 2022, 12, e574.	1.7	11
38	P53 modulates hepatic insulin sensitivity through NF-κB and p38/ERK MAPK pathways. Biochemical and Biophysical Research Communications, 2018, 495, 2139-2144.	1.0	9
39	Protective effects of ginseng stem-leaf saponins on D-galactose-induced reproductive injury in male mice. Aging, 2021, 13, 8916-8928.	1.4	9
40	Sirt1 Mediates Vitamin D Deficiency-Driven Gluconeogenesis in the Liver via mTorc2/Akt Signaling. Journal of Diabetes Research, 2022, 2022, 1-16.	1.0	9
41	Apatinib suppresses lung cancer stem-like cells by complex interplay between \hat{l}^2 -catenin signaling and mitochondrial ROS accumulation. Cell Death Discovery, 2021, 7, 102.	2.0	8
42	Interleukin-17A mediates tobacco smoke–induced lung cancer epithelial-mesenchymal transition through transcriptional regulation of ΔNp63α on miR-19. Cell Biology and Toxicology, 2022, 38, 273-289.	2.4	6
43	P16INK4a Deletion Ameliorates Damage of Intestinal Epithelial Barrier and Microbial Dysbiosis in a Stress-Induced Premature Senescence Model of Bmi-1 Deficiency. Frontiers in Cell and Developmental Biology, 2021, 9, 671564.	1.8	6
44	Bmi-1 plays a critical role in the protection from acute tubular necrosis by mobilizing renal stem/progenitor cells. Biochemical and Biophysical Research Communications, 2017, 482, 742-749.	1.0	5
45	î"Np63î± mediates sulforaphane suppressed colorectal cancer stem cell properties through transcriptional regulation of Nanog/Oct4/Sox2. Journal of Nutritional Biochemistry, 2022, 107, 109067.	1.9	5
46	Chronic Alcohol Reduces Bone Mass Through Inhibiting Proliferation and Promoting Aging of Endothelial Cells in Type-H Vessels. Stem Cells and Development, 2022, 31, 541-554.	1.1	3
47	Amniotic membrane mesenchymal stem cellsâ€based therapy improves Bmiâ€lâ€deficient mandible osteoporosis through stimulating osteoblastic bone formation and inhibiting osteoclastic bone resorption. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 538-549.	1.3	2