SeokJae Yoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5477063/publications.pdf

Version: 2024-02-01

37 papers	1,168 citations	16 h-index	433756 31 g-index
37 all docs	37 docs citations	37 times ranked	1479 citing authors

#	Article	IF	CITATIONS
1	Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns. Applied Physics Letters, 2005, 87, 203508.	1.5	313
2	Metamaterials and chiral sensing: a review of fundamentals and applications. Nanophotonics, 2019, 8, 249-261.	2.9	158
3	Chiral Light-Matter Interaction in Optical Resonators. Physical Review Letters, 2015, 114, 203003.	2.9	105
4	Measuring the optical permittivity of two-dimensional materials without <i>a priori</i> knowledge of electronic transitions. Nanophotonics, 2019, 8, 263-270.	2.9	77
5	Microscopic Origin of Surface-Enhanced Circular Dichroism. ACS Photonics, 2017, 4, 2047-2052.	3.2	52
6	Efficient Fizeau drag from Dirac electrons in monolayer graphene. Nature, 2021, 594, 517-521.	13.7	48
7	Globally enhanced chiral field generation by negative-index metamaterials. Physical Review B, 2014, 89, .	1.1	44
8	Enhancement of Chiroptical Signals by Circular Differential Mie Scattering of Nanoparticles. Scientific Reports, 2015, 5, 14463.	1.6	43
9	Bioinspired Toolkit Based on Intermolecular Encoder toward Evolutionary 4D Chiral Plasmonic Materials. Accounts of Chemical Research, 2019, 52, 2768-2783.	7.6	41
10	Limitations and Opportunities for Optical Metafluids To Achieve an Unnatural Refractive Index. ACS Photonics, 2017, 4, 2298-2311.	3.2	39
11	Effective permittivity for resonant plasmonic nanoparticle systems via dressed polarizability. Optics Express, 2012, 20, 16480.	1.7	28
12	Circularly Polarized Emission from Organic–Inorganic Hybrid Perovskites <i>via</i> Chiral Fano Resonances. ACS Nano, 2021, 15, 13781-13793.	7.3	28
13	Loss-Free Negative-Index Metamaterials Using Forward Light Scattering in Dielectric Meta-Atoms. ACS Photonics, 2018, 5, 1370-1374.	3.2	23
14	Topological Control of 2D Perovskite Emission in the Strong Coupling Regime. Nano Letters, 2021, 21, 10076-10085.	4.5	22
15	Large-area plasmon enhanced two-dimensional MoS ₂ . Nanoscale, 2017, 9, 16244-16248.	2.8	21
16	Gate-tunable plasmons in mixed-dimensional van der Waals heterostructures. Nature Communications, 2021, 12, 5039.	5.8	20
17	Plasmon Enhanced Direct Bandgap Emissions in Cu ₇ S ₄ @Au ₂ S@Au Nanorings. Small, 2016, 12, 5728-5733.	5.2	16
18	Robust numerical evaluation of circular dichroism from chiral medium/nanostructure coupled systems using the finite-element method. Scientific Reports, 2018, 8, 8406.	1.6	16

#	Article	IF	Citations
19	Spectroscopic ellipsometry for low-dimensional materials and heterostructures. Nanophotonics, 2022, 11, 2811-2825.	2.9	14
20	Causal homogenization of metamaterials. Nanophotonics, 2019, 8, 1063-1069.	2.9	9
21	Maximal Visible Light Energy Transfer to Ultrathin Semiconductor Films Enabled by Dispersion Control. Advanced Optical Materials, 2019, 7, 1801229.	3.6	9
22	Anomalous Wavelength Scaling of Tightly Coupled Terahertz Metasurfaces. ACS Applied Materials & Samp; Interfaces, 2018, 10, 19331-19335.	4.0	8
23	Molecular chirality detection using plasmonic and dielectric nanoparticles. Nanophotonics, 2022, 11, 1897-1904.	2.9	8
24	Strong visible magnetic resonance of size-controlled silicon-nanoblock metasurfaces. Applied Physics Express, 2016, 9, 042001.	1.1	6
25	Tunneling Spectroscopy in Carbon Nanotube-Hexagonal Boron Nitride-Carbon Nanotube Heterojunctions. Nano Letters, 2020, 20, 6712-6718.	4.5	6
26	Extraordinary Figureâ€ofâ€Merit of Magnetic Resonance from Ultrathin Silicon Nanohole Membrane as Allâ€Dielectric Metamaterial. Advanced Optical Materials, 2017, 5, 1600628.	3.6	4
27	Polarimetric microscopy for optical control and high precision measurement of valley polarization. Review of Scientific Instruments, 2018, 89, 063118.	0.6	3
28	Electromagnetic metamaterial simulations using a GPU-accelerated FDTD method. Journal of the Korean Physical Society, 2015, 67, 2026-2032.	0.3	2
29	Optically Patternable Metamaterial Below Diffraction Limit. ACS Applied Materials & Diffraction Limit. ACS Appl	4.0	2
30	Infrared Light-Emitting Devices from Antenna-Coupled Luttinger Liquid Plasmons In Carbon Nanotubes. Physical Review Letters, 2021, 127, 257702.	2.9	2
31	Gyroelectric guided modes with transverse optical spin. Optics Express, 2021, 29, 10631.	1.7	1
32	Improvement of effective medium approximation for dense plasmonic nanoparticle monolayers., 2011,,		0
33	Fano resonant chiral electromagnetic fields by metasurfaces. , 2015, , .		0
34	Light extraction efficiency enhancement using surface-structured light-emitting diodes with a subwavelength coating. Journal of the Korean Physical Society, 2016, 68, 462-466.	0.3	0
35	Label-Free Sensing: Extraordinary Figure-of-Merit of Magnetic Resonance from Ultrathin Silicon Nanohole Membrane as All-Dielectric Metamaterial (Advanced Optical Materials 3/2017). Advanced Optical Materials, 2017, 5, .	3.6	0
36	Analysis on the surface-enhanced circular dichroism spectroscopy., 2017,,.		0

#	Article	IF	CITATIONS
37	Correction to "Loss-Free Negative-Index Metamaterials Using Forward Light Scattering in Dielectric Meta-Atoms― ACS Photonics, 2018, 5, 2537-2537.	3.2	O