Pan Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5477037/publications.pdf

Version: 2024-02-01

840776 1058476 14 672 11 14 citations h-index g-index papers 14 14 14 1091 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Dual Quantification of MicroRNAs and Telomerase in Living Cells. Journal of the American Chemical Society, 2017, 139, 11752-11759.	13.7	262
2	A Chiralâ€Nanoassembliesâ€Enabled Strategy for Simultaneously Profiling Surface Glycoprotein and MicroRNA in Living Cells. Advanced Materials, 2017, 29, 1703410.	21.0	119
3	Peptide nucleic acid-based electrochemical biosensor for simultaneous detection of multiple microRNAs from cancer cells with catalytic hairpin assembly amplification. Sensors and Actuators B: Chemical, 2020, 305, 127545.	7.8	64
4	Scissorâ€Like Chiral Metamolecules for Probing Intracellular Telomerase Activity. Advanced Functional Materials, 2016, 26, 7352-7358.	14.9	51
5	A self-assembled chiral-aptasensor for ATP activity detection. Nanoscale, 2016, 8, 15008-15015.	5.6	40
6	SERS-active silver nanoparticle trimers for sub-attomolar detection of alpha fetoprotein. RSC Advances, 2015, 5, 73395-73398.	3.6	33
7	Colorimetric detection of single base-pair mismatches based on the interactions of PNA and PNA/DNA complexes with unmodified gold nanoparticles. Colloids and Surfaces B: Biointerfaces, 2019, 181, 333-340.	5.0	20
8	A persistent luminescence resonance energy transfer-based molecular beacon probe for the highly sensitive detection of microRNA in biological samples. Biosensors and Bioelectronics, 2022, 198, 113849.	10.1	17
9	Dual cascade isothermal amplification reaction based glucometer sensors for point-of-care diagnostics of cancer-related microRNAs. Analyst, The, 2021, 146, 3242-3250.	3.5	15
10	A peptide nucleic acid–regulated fluorescence resonance energy transfer DNA assay based on the use of carbon dots and gold nanoparticles. Mikrochimica Acta, 2020, 187, 375.	5.0	14
11	Label-free colorimetric aptasensor for highly sensitive and selective detection of proteins by using PNA/DNA hybrids and a cyanine dye. Analytical Methods, 2018, 10, 3824-3829.	2.7	12
12	Peptide Nucleic Acid-Assisted Label-free Detection of Single-Nucleotide Polymorphisms Based on Light Scattering of Carbon Nanotubes. ACS Omega, 2018, 3, 17835-17841.	3.5	11
13	Highly sensitive and specific screening of EGFR mutation using a PNA microarray-based fluorometric assay based on rolling circle amplification and graphene oxide. RSC Advances, 2019, 9, 38298-38308.	3.6	8
14	A PNAâ€DNA ₂ Tripleâ€Helix Molecular Switchâ€Based Colorimetric Sensor for Sensitive and Specific Detection of microRNAs from Cancer Cells. ChemBioChem, 2020, 21, 2667-2675.	2.6	6