Isabel LÃ³pez-Alfaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5476937/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of atmospheric pressure cold plasma to sanitize oak wine barrels. LWT - Food Science and Technology, 2021, 139, 110509.	5.2	7
2	Pulsed Electric Field treatment after malolactic fermentation of Tempranillo Rioja wines: Influence on microbial, physicochemical and sensorial quality. Innovative Food Science and Emerging Technologies, 2019, 51, 57-63.	5.6	24
3	Continuous pulsed electric field treatments' impact on the microbiota of red Tempranillo wines aged in oak barrels. Food Bioscience, 2019, 27, 54-59.	4.4	13
4	Foliar application of nitrogenous compounds and elicitors to Tempranillo grapevines: Microbiological implications. Spanish Journal of Agricultural Research, 2019, 17, e0301.	0.6	0
5	Evaluating a preventive biological control agent applied on grapevines against <i>Botrytis cinerea</i> and its influence on winemaking. Journal of the Science of Food and Agriculture, 2018, 98, 4517-4526.	3.5	19
6	Microbial inactivation and MLF performances of Tempranillo Rioja wines treated with PEF after alcoholic fermentation. International Journal of Food Microbiology, 2018, 269, 19-26.	4.7	22
7	Impact of Chemical and Biological Fungicides Applied to Grapevine on Grape Biofilm, Must, and Wine Microbial Diversity. Frontiers in Microbiology, 2018, 9, 59.	3.5	27
8	Wine aroma evolution throughout alcoholic fermentation sequentially inoculated with non- Saccharomyces/Saccharomyces yeasts. Food Research International, 2018, 112, 17-24.	6.2	64
9	Lactic acid bacteria communities in must, alcoholic and malolactic Tempranillo wine fermentations, by culture-dependent and culture-independent methods. European Food Research and Technology, 2017, 243, 41-48.	3.3	12
10	Phenylalanine and urea foliar application: Effect on grape and must microbiota. International Journal of Food Microbiology, 2017, 245, 88-97.	4.7	15
11	Comparison of Brettanomyces yeast presence in young red wines in two consecutive vintages. European Food Research and Technology, 2017, 243, 827-834.	3.3	4
12	Impact of Pulsed Electric Field Treatment on Must and Wine Quality. , 2017, , 2391-2406.		0
13	Inactivation of Brettanomyces bruxellensis by High Hydrostatic Pressure technology. Food Control, 2016, 59, 188-195.	5.5	28
14	Impact of Pulsed Electric Field Treatment on Must and Wine Quality. , 2016, , 1-16.		1
15	Methyl Jasmonate Foliar Application to Tempranillo Vineyard Improved Grape and Wine Phenolic Content. Journal of Agricultural and Food Chemistry, 2015, 63, 2328-2337.	5.2	84
16	Changes on grape phenolic composition induced by grapevine foliar applications of phenylalanine and urea. Food Chemistry, 2015, 180, 171-180.	8.2	71
17	Pulsed electric field treatment to improve the phenolic compound extraction from Graciano, Tempranillo and Grenache grape varieties during two vintages. Innovative Food Science and Emerging Technologies, 2015, 28, 31-39.	5.6	44
18	Genomic diversity of Oenococcus oeni populations from Castilla La Mancha and La Rioja Tempranillo red wines. Food Microbiology, 2015, 49, 82-94.	4.2	12

#	Article	IF	CITATIONS
19	Inactivation of wine-associated microbiota by continuous pulsed electric field treatments. Innovative Food Science and Emerging Technologies, 2015, 29, 187-192.	5.6	41
20	Analysis of grapes and the first stages of the vinification process in wine contamination with Brettanomyces bruxellensis. European Food Research and Technology, 2015, 240, 525-532.	3.3	15
21	Foliar application of proline, phenylalanine, and urea to Tempranillo vines: Effect on grape volatile composition and comparison with the use of commercial nitrogen fertilizers. LWT - Food Science and Technology, 2015, 60, 684-689.	5.2	63
22	Amino acid content in red wines obtained from grapevine nitrogen foliar treatments: consumption during the alcoholic fermentation. Wine Studies, 2014, 3, .	0.4	7
23	Application of colloidal silver versus sulfur dioxide during vinification and storage of Tempranillo red wines. Australian Journal of Grape and Wine Research, 2014, 20, 51-61.	2.1	34
24	Oenococcus oeni strain typification by combination of Multilocus Sequence Typing and Pulsed Field Gel Electrophoresis analysis. Food Microbiology, 2014, 38, 295-302.	4.2	18
25	Study of the effects of proline, phenylalanine, and urea foliar application to Tempranillo vineyards on grape amino acid content. Comparison with commercial nitrogen fertilisers. Food Chemistry, 2014, 163, 136-141.	8.2	100
26	Molecular analysis of Oenococcus oeni and the relationships among and between commercial and autochthonous strains. Journal of Bioscience and Bioengineering, 2014, 118, 272-276.	2.2	12
27	Dynamics of lactic acid bacteria populations in Rioja wines by PCR-DGGE, comparison with culture-dependent methods. Applied Microbiology and Biotechnology, 2013, 97, 6931-6941.	3.6	31
28	Pulsed electric field treatment enhanced stilbene content in Graciano, Tempranillo and Grenache grape varieties. Food Chemistry, 2013, 141, 3759-3765.	8.2	34
29	Effect of different pulsed electric field treatments on the volatile composition of Graciano, Tempranillo and Grenache grape varieties. Innovative Food Science and Emerging Technologies, 2013, 20, 91-99.	5.6	43
30	Indigenous lactic acid bacteria communities in alcoholic and malolactic fermentations of Tempranillo wines elaborated in ten wineries of La Rioja (Spain). Food Research International, 2013, 50, 438-445.	6.2	24
31	Microwave technology as a new tool to improve microbiological control of oak barrels: A preliminary study. Food Control, 2013, 30, 536-539.	5.5	36
32	Elaboration of Tempranillo wines at two different pHs. Influence on biogenic amine contents. Food Control, 2012, 25, 583-590.	5.5	28
33	Application of the Different Electrophoresis Techniques to the Detection and Identification of Lactic Acid Bacteria in Wines. , 2012, , .		3
34	Ecology of Indigenous Lactic Acid Bacteria along Different Winemaking Processes of Tempranillo Red Wine from La Rioja (Spain). Scientific World Journal, The, 2012, 2012, 1-7.	2.1	16
35	Dynamics of Indigenous Lactic Acid Bacteria Populations in Wine Fermentations from La Rioja (Spain) During Three Vintages. Microbial Ecology, 2012, 63, 12-19.	2.8	32
36	Malolactic fermentation of Tempranillo wine: contribution of the lactic acid bacteria inoculation to sensory quality and chemical composition. International Journal of Food Science and Technology, 2011, 46, 2373-2381.	2.7	40

ISABEL LÃ³PEZ-ALFARO

#	Article	IF	CITATIONS
37	Quantitative and qualitative analysis of non-Saccharomyces yeasts in spontaneous alcoholic fermentations. European Food Research and Technology, 2010, 230, 885-891.	3.3	38
38	Evaluation of Lysozyme to Control Vinification Process and Histamine Production in Rioja Wines. Journal of Microbiology and Biotechnology, 2009, 19, 1005-1012.	2.1	37
39	Genetic typification by pulsed-field gel electrophoresis (PFGE) and randomly amplified polymorphic DNA (RAPD) of wild Lactobacillus plantarum and Oenococcus oeni wine strains. European Food Research and Technology, 2008, 227, 547-555.	3.3	33
40	Evidence of mixed wild populations of Oenococcus oeni strains during wine spontaneous malolactic fermentations. European Food Research and Technology, 2007, 226, 215-223.	3.3	47
41	High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol. FEMS Microbiology Letters, 2004, 230, 53-61.	1.8	181
42	Design and Evaluation of PCR Primers for Analysis of Bacterial Populations in Wine by Denaturing Gradient Gel Electrophoresis. Applied and Environmental Microbiology, 2003, 69, 6801-6807.	3.1	168