
Tejinder Kaur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5476865/publications.pdf Version: 2024-02-01

TEINDED KALLD

#	Article	IF	CITATIONS
1	Multimodal biomicroscopic system for the characterization of cells with high spatial phase sensitivity and subâ€pixel accuracy. Journal of Biophotonics, 2022, 15, e202100258.	2.3	2
2	Design and development of integrated TIRF and common-path quantitative phase microscopic health care system with high stability. Optics and Lasers in Engineering, 2022, 155, 107057.	3.8	3
3	3D Bioprinted Alginate-Silk-Based Smart Cell-Instructive Scaffolds for Dual Differentiation of Human Mesenchymal Stem Cells. ACS Applied Bio Materials, 2022, 5, 2870-2879.	4.6	12
4	Exploiting synergistic effect of externally loaded bFGF and endogenous growth factors for accelerated wound healing using heparin functionalized PCL/gelatin co-spun nanofibrous patches. Chemical Engineering Journal, 2021, 404, 126518.	12.7	51
5	Surface characterization of polycaprolactone and carbonyl iron powder composite fabricated by solvent cast 3D printing for tissue engineering. Polymer Composites, 2021, 42, 865-871.	4.6	9
6	A comparative analysis of solvent cast <scp>3D</scp> printed carbonyl iron powder reinforced polycaprolactone polymeric stents for intravascular applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1344-1359.	3.4	13
7	Exploiting Substrate Cues for Co-Culturing Cells in a Micropattern. Langmuir, 2021, 37, 4933-4942.	3.5	5
8	3D bioprinted alginate-gelatin based scaffolds for soft tissue engineering. International Journal of Biological Macromolecules, 2020, 144, 560-567.	7.5	70
9	Biological and mechanical characterization of biodegradable carbonyl iron powder/polycaprolactone composite material fabricated using three-dimensional printing for cardiovascular stent application. Proceedings of the Institution of Mechanical Engineers, Part H: lournal of Engineering in Medicine. 2020. 234. 975-987.	1.8	21
10	Modulating neutrophil extracellular traps for wound healing. Biomaterials Science, 2020, 8, 3212-3223.	5.4	31
11	Simultaneous fluorescence and quantitative phase imaging of MG63 osteosarcoma cells to monitor morphological changes with time using partially spatially coherent light source. Methods and Applications in Fluorescence, 2020, 8, 035004.	2.3	9
12	Spatiotemporal Control over Cell Proliferation and Differentiation for Tissue Engineering and Regenerative Medicine Applications Using Silk Fibroin Scaffolds. ACS Applied Bio Materials, 2020, 3, 3476-3493.	4.6	13
13	Quantitative phase imaging of MG63 cancer cells for monitoring changes in morphology with time using spatially low and temporally high coherent light source. , 2019, , .		Ο
14	Biofunctionalization of commercially pure titanium with chitosan/hydroxyapatite biocomposite via silanization: evaluation of biological performances. Journal of Adhesion Science and Technology, 2017, 31, 1768-1781.	2.6	13
15	Biological and mechanical evaluation of poly(lactic-co-glycolic acid)-based composites reinforced with 1D, 2D and 3D carbon biomaterials for bone tissue regeneration. Biomedical Materials (Bristol), 2017, 12, 025012.	3.3	25
16	Chitosan composite three dimensional macrospheric scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2017, 104, 1946-1954.	7.5	19
17	Tailoring in vitro biological and mechanical properties of polyvinyl alcohol reinforced with threshold carbon nanotube concentration for improved cellular response. RSC Advances, 2016, 6, 39982-39992.	3.6	47
18	The influence of silane and silane–PMMA coatings on the in vitro biodegradation behavior of AE42 magnesium alloy for cardiovascular stent applications. RSC Advances, 2016, 6, 107344-107354.	3.6	20

#	Article	IF	CITATIONS
19	Tailoring the <i>in vitro</i> characteristics of poly(vinyl alcohol)-nanohydroxyapatite composite scaffolds for bone tissue engineering. Journal of Polymer Engineering, 2016, 36, 771-784.	1.4	13
20	Microwave-assisted synthesis of porous chitosan–modified montmorillonite–hydroxyapatite composite scaffolds. International Journal of Biological Macromolecules, 2016, 82, 628-636.	7.5	61