
Byung-Ha Oh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5476662/publications.pdf Version: 2024-02-01

ВУШИС-НА ОН

#	Article	IF	CITATIONS
1	Structural and functional characterization of a monoclonal antibody blocking TIGIT. MAbs, 2022, 14, 2013750.	5.2	6
2	Computational design of a neutralizing antibody with picomolar binding affinity for all concerning SARS-CoV-2 variants. MAbs, 2022, 14, 2021601.	5.2	11
3	Reversible modification of mitochondrial ADP/ATP translocases by paired <i>Legionella</i> effector proteins. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	6
4	Crystal structure of PYCH_01220 from <i>Pyrococcus yayanosii</i> potentially involved in binding nucleic acid. Proteins: Structure, Function and Bioinformatics, 2021, 89, 468-472.	2.6	0
5	De novo design of modular and tunable protein biosensors. Nature, 2021, 591, 482-487.	27.8	153
6	Folding of cohesin's coiled coil is important for Scc2/4-induced association with chromosomes. ELife, 2021, 10, .	6.0	37
7	Structural basis for effector protein recognition by the Dot/Icm Type IVB coupling protein complex. Nature Communications, 2020, 11, 2623.	12.8	29
8	A computationally designed chimeric antigen receptor provides a small-molecule safety switch for T-cell therapy. Nature Biotechnology, 2020, 38, 426-432.	17.5	100
9	Evidence for binary Smc complexes lacking kite subunits in archaea. IUCrJ, 2020, 7, 193-206.	2.2	1
10	Optogenetic activation of intracellular antibodies for direct modulation of endogenous proteins. Nature Methods, 2019, 16, 1095-1100.	19.0	95
11	In vivo genome editing using the Cpf1 ortholog derived from Eubacterium eligens. Scientific Reports, 2019, 9, 13911.	3.3	6
12	Covalent binding of uracil DNA glycosylase UdgX to abasic DNA upon uracil excision. Nature Chemical Biology, 2019, 15, 607-614.	8.0	34
13	Structural basis of inactivation of Ras and Rap1 small GTPases by Ras/Rap1-specific endopeptidase from the sepsis-causing pathogen Vibrio vulnificus. Journal of Biological Chemistry, 2018, 293, 18110-18122.	3.4	8
14	RNA activationâ€independent DNA targeting of the Type III CRISPRâ€Cas system by a Csm complex. EMBO Reports, 2017, 18, 826-840.	4.5	23
15	Structure of Full-Length SMC and Rearrangements Required for Chromosome Organization. Molecular Cell, 2017, 67, 334-347.e5.	9.7	151
16	Architecture of the type IV coupling protein complex of Legionella pneumophila. Nature Microbiology, 2017, 2, 17114.	13.3	60
17	Autophagic UVRAG Promotes UV-Induced Photolesion Repair by Activation of the CRL4 DDB2 E3 Ligase. Molecular Cell, 2016, 62, 507-519.	9.7	33
18	Identification of a Highly Conserved Hypothetical Protein TON_0340 as a Probable Manganese-Dependent Phosphatase. PLoS ONE, 2016, 11, e0167549.	2.5	1

Βγυνς-ΗΑ ΟΗ

#	Article	IF	CITATIONS
19	Crystal structure of Hop2–Mnd1 and mechanistic insights into its role in meiotic recombination. Nucleic Acids Research, 2015, 43, 3841-3856.	14.5	42
20	Molecular Basis for SMC Rod Formation and Its Dissolution upon DNA Binding. Molecular Cell, 2015, 57, 290-303.	9.7	126
21	Crystal Structure of the Csm1 Subunit of the Csm Complex and Its Single-Stranded DNA-Specific Nuclease Activity. Structure, 2015, 23, 782-790.	3.3	61
22	Novel functions of viral anti-apoptotic factors. Nature Reviews Microbiology, 2015, 13, 7-12.	28.6	31
23	Lpg0393 of Legionella pneumophila Is a Guanine-Nucleotide Exchange Factor for Rab5, Rab21 and Rab22. PLoS ONE, 2015, 10, e0118683.	2.5	16
24	SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis. ELife, 2015, 4, .	6.0	130
25	Crosstalk between the cGAS DNA Sensor and Beclin-1 Autophagy Protein Shapes Innate Antimicrobial Immune Responses. Cell Host and Microbe, 2014, 15, 228-238.	11.0	291
26	Molecular basis for unidirectional scaffold switching of human Plk4 in centriole biogenesis. Nature Structural and Molecular Biology, 2014, 21, 696-703.	8.2	94
27	Structural basis of intersubunit recognition in elongin BC–cullin 5–SOCS box ubiquitin–protein ligase complexes. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1587-1597.	2.5	32
28	An asymmetric SMC–kleisin bridge in prokaryotic condensin. Nature Structural and Molecular Biology, 2013, 20, 371-379.	8.2	119
29	Crystal structure and nucleic acidâ€binding activity of the CRISPRâ€associated protein Csx1 of <i>Pyrococcus furiosus</i> . Proteins: Structure, Function and Bioinformatics, 2013, 81, 261-270.	2.6	40
30	Kaposi's Sarcoma-Associated Herpesvirus K7 Modulates Rubicon-Mediated Inhibition of Autophagosome Maturation. Journal of Virology, 2013, 87, 12499-12503.	3.4	72
31	VipD of Legionella pneumophila Targets Activated Rab5 and Rab22 to Interfere with Endosomal Trafficking in Macrophages. PLoS Pathogens, 2012, 8, e1003082.	4.7	89
32	Phosphoinositides Differentially Regulate Protrudin Localization through the FYVE Domain. Journal of Biological Chemistry, 2012, 287, 41268-41276.	3.4	33
33	5â€2-Triphosphate-RNA-independent activation of RIG-I via RNA aptamer with enhanced antiviral activity. Nucleic Acids Research, 2012, 40, 2724-2733.	14.5	62
34	Crystal Structure of the Gtr1pGTP-Gtr2pGDP Protein Complex Reveals Large Structural Rearrangements Triggered by GTP-to-GDP Conversion. Journal of Biological Chemistry, 2012, 287, 29648-29653.	3.4	60
35	DeSUMOylating isopeptidase: a second class of SUMO protease. EMBO Reports, 2012, 13, 339-346.	4.5	153
36	Association of Novel Domain in Active Site of Archaic Hyperthermophilic Maltogenic Amylase from Staphylothermus marinus. Journal of Biological Chemistry, 2012, 287, 7979-7989.	3.4	30

Βγυνς-ΗΑ ΟΗ

#	Article	IF	CITATIONS
37	Crystal structure of DeSlâ€1, a novel deSUMOylase belonging to a putative isopeptidase superfamily. Proteins: Structure, Function and Bioinformatics, 2012, 80, 2099-2104.	2.6	29
38	ldentification, structural, and biochemical characterization of a group of large Csn2 proteins involved in CRISPRâ€nediated bacterial immunity. Proteins: Structure, Function and Bioinformatics, 2012, 80, 2573-2582.	2.6	29
39	Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Research, 2011, 21, 627-641.	12.0	245
40	Crystal structure of the MukB hinge domain with coiled oil stretches and its functional implications. Proteins: Structure, Function and Bioinformatics, 2010, 78, 1483-1490.	2.6	28
41	Structural insights into the dual nucleotide exchange and GDI displacement activity of SidM/DrrA. EMBO Journal, 2010, 29, 496-504.	7.8	66
42	Regulation of <i>Drosophila</i> Vasa <i>In Vivo</i> through Paralogous Cullin-RING E3 Ligase Specificity Receptors. Molecular and Cellular Biology, 2010, 30, 1769-1782.	2.3	37
43	Coordination of multiple dual oxidase–regulatory pathways in responses to commensal and infectious microbes in drosophila gut. Nature Immunology, 2009, 10, 949-957.	14.5	301
44	Structural Studies of a Bacterial Condensin Complex Reveal ATP-Dependent Disruption of Intersubunit Interactions. Cell, 2009, 136, 85-96.	28.9	145
45	The TRAPP Complex: Insights into its Architecture and Function. Traffic, 2008, 9, 2032-2042.	2.7	106
46	Structural and Biochemical Bases for the Inhibition of Autophagy and Apoptosis by Viral BCL-2 of Murine Î ³ -Herpesvirus 68. PLoS Pathogens, 2008, 4, e25.	4.7	174
47	An insight into the mechanistic role of Beclin 1 and its inhibition by prosurvival Bcl-2 family proteins. Autophagy, 2008, 4, 519-520.	9.1	41
48	Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6602-6607.	7.1	143
49	UVRAG: A New Player in Autophagy and Tumor Cell Growth. Autophagy, 2007, 3, 69-71.	9.1	60
50	The Architecture of the Multisubunit TRAPP I Complex Suggests a Model for Vesicle Tethering. Cell, 2006, 127, 817-830.	28.9	166
51	Structural Basis for Protein Recognition by B30.2/SPRY Domains. Molecular Cell, 2006, 24, 967-976.	9.7	112
52	The Drosophila Amidase PGRP-LB Modulates the Immune Response to Bacterial Infection. Immunity, 2006, 24, 463-473.	14.3	423
53	Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAC. Nature Cell Biology, 2006, 8, 688-698.	10.3	945
54	PGRP-LC and PGRP-LE have essential yet distinct functions in the drosophila immune response to monomeric DAP-type peptidoglycan. Nature Immunology, 2006, 7, 715-723.	14.5	345

Βγυνς-ΗΑ ΟΗ

#	Article	IF	CITATIONS
55	Structural and functional insights into the B30.2/SPRY domain. EMBO Journal, 2006, 25, 1353-1363.	7.8	139
56	Structural Basis for Preferential Recognition of Diaminopimelic Acid-type Peptidoglycan by a Subset of Peptidoglycan Recognition Proteins. Journal of Biological Chemistry, 2006, 281, 8286-8295.	3.4	145
57	Crystal structure of bet3 reveals a novel mechanism for Golgi localization of tethering factor TRAPP. Nature Structural and Molecular Biology, 2005, 12, 38-45.	8.2	56
58	Crystal structure of a clip-domain serine protease and functional roles of the clip domains. EMBO Journal, 2005, 24, 4404-4414.	7.8	129
59	Biochemical and Crystallographic Studies Reveal a Specific Interaction Between TRAPP Subunits Trs33p and Bet3p. Traffic, 2005, 6, 1183-1195.	2.7	26
60	Two-promoter vector is highly efficient for overproduction of protein complexes. Protein Science, 2004, 13, 1698-1703.	7.6	76
61	Structural Mechanism for Inactivation and Activation of CAD/DFF40 in the Apoptotic Pathway. Molecular Cell, 2004, 14, 531-539.	9.7	94
62	Macromolecular assembly ofHelicobacter pylori urease investigated by mass spectrometry. Journal of Mass Spectrometry, 2003, 38, 315-320.	1.6	58
63	Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster. Nature Immunology, 2003, 4, 787-793.	14.5	190
64	Crystal Structures of RbsD Leading to the Identification of Cytoplasmic Sugar-binding Proteins with a Novel Folding Architecture. Journal of Biological Chemistry, 2003, 278, 28173-28180.	3.4	20
65	Characterization of a Novel Ser-cisSer-Lys Catalytic Triad in Comparison with the Classical Ser-His-Asp Triad. Journal of Biological Chemistry, 2003, 278, 24937-24943.	3.4	54
66	Cyclomaltodextrinase, Neopullulanase, and Maltogenic Amylase Are Nearly Indistinguishable from Each Other. Journal of Biological Chemistry, 2002, 277, 21891-21897.	3.4	139
67	Crystal Structure of SEDL and Its Implications for a Genetic Disease Spondyloepiphyseal Dysplasia Tarda. Journal of Biological Chemistry, 2002, 277, 49863-49869.	3.4	73
68	Resistance of mitochondrial DNA-deficient cells to TRAIL: role of Bax in TRAIL-induced apoptosis. Oncogene, 2002, 21, 3139-3148.	5.9	71
69	Structure of malonamidase E2 reveals a novel Ser-cisSer-Lys catalytic triad in a new serine hydrolase fold that is prevalent in nature. EMBO Journal, 2002, 21, 2509-2516.	7.8	105
70	Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nature Structural Biology, 2001, 8, 505-509.	9.7	404
71	Enzyme Mechanism and Catalytic Property of Î ² Propeller Phytase. Structure, 2001, 9, 851-858.	3.3	113
72	Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states. Nature Structural Biology, 2000, 7, 147-153.	9.7	123

Byung-Ha Oh

#	Article	IF	CITATIONS
73	Crystal Structure of TRAIL-DR5 Complex Identifies a Critical Role of the Unique Frame Insertion in Conferring Recognition Specificity. Journal of Biological Chemistry, 2000, 275, 31171-31177.	3.4	114
74	Detection of Large pK Perturbations of an Inhibitor and a Catalytic Group at an Enzyme Active Site, a Mechanistic Basis for Catalytic Power of Many Enzymes. Journal of Biological Chemistry, 2000, 275, 41100-41106.	3.4	42
75	Crystal Structure of Δ5-3-Ketosteroid Isomerase from Pseudomonas testosteroni in Complex with Equilenin Settles the Correct Hydrogen Bonding Scheme for Transition State Stabilization. Journal of Biological Chemistry, 1999, 274, 32863-32868.	3.4	74
76	Crystal Structure of a Maltogenic Amylase Provides Insights into a Catalytic Versatility. Journal of Biological Chemistry, 1999, 274, 26279-26286.	3.4	144
77	Preliminary X-ray crystallographic analysis of a novel phytase from aBacillus amyloliquefaciensstrain. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 691-693.	2.5	19
78	2.8 Ã Resolution Crystal Structure of Human TRAIL, a Cytokine with Selective Antitumor Activity. Immunity, 1999, 11, 253-261.	14.3	158
79	Molecular and enzymatic characterization of a maltogenic amylase that hydrolyzes and transglycosylates acarbose. FEBS Journal, 1998, 253, 251-262.	0.2	106
80	Characterization of a Thermostable Cyclodextrin Glucanotransferase Isolated fromBacillusstearothermophilusET1â€. Journal of Agricultural and Food Chemistry, 1998, 46, 952-959.	5.2	43
81	Crystal Structure of RNA Helicase from Genotype 1b Hepatitis C Virus. Journal of Biological Chemistry, 1998, 273, 15045-15052.	3.4	202
82	High Resolution Crystal Structure of a Human Tumor Necrosis Factor-α Mutant with Low Systemic Toxicity. Journal of Biological Chemistry, 1998, 273, 2153-2160.	3.4	39
83	High-Resolution X-ray Crystallography Reveals Precise Binding Interactions between Human Nonpancreatic Secreted Phospholipase A2and a Highly Potent Inhibitor (FPL67047XX). Journal of Medicinal Chemistry, 1996, 39, 3878-3881.	6.4	40
84	Structure/Function Analysis of the Periplasmic Histidine-binding Protein. Journal of Biological Chemistry, 1995, 270, 16097-16106.	3.4	29
85	Structure-function studies of [2Fe-2S] ferredoxins. Journal of Bioenergetics and Biomembranes, 1994, 26, 67-88.	2.3	101