Clancy James

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5476562/publications.pdf

Version: 2024-02-01

135 papers	8,493 citations	94433 37 h-index	90 g-index
Paporo			5 maen
136 all docs	136 docs citations	136 times ranked	10092 citing authors

#	Article	IF	CITATIONS
1	Multi-messenger Observations of a Binary Neutron Star Merger < sup>* < /sup>. Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
2	Letter of intent for KM3NeT 2.0. Journal of Physics G: Nuclear and Particle Physics, 2016, 43, 084001.	3.6	512
3	A census of baryons in the Universe from localized fast radio bursts. Nature, 2020, 581, 391-395.	27.8	341
4	Science with ASKAP. Experimental Astronomy, 2008, 22, 151-273.	3.7	332
5	A single fast radio burst localized to a massive galaxy at cosmological distance. Science, 2019, 365, 565-570.	12.6	295
6	Science with the Australian Square Kilometre Array Pathfinder. Publications of the Astronomical Society of Australia, 2007, 24, 174-188.	3.4	231
7	The dispersion–brightness relation for fast radio bursts from a wide-field survey. Nature, 2018, 562, 386-390.	27.8	223
8	Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event. Nature Physics, 2016, 12, 807-814.	16.7	170
9	The SUrvey for Pulsars and Extragalactic Radio Bursts – II. New FRB discoveries and their follow-up. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1427-1446.	4.4	156
10	Simulating radio emission from air showers with CoREAS. AIP Conference Proceedings, 2013, , .	0.4	145
11	Follow Up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	142
12	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophysical Journal Letters, 2017, 850, L35.	8.3	135
13	Detecting cosmic rays with the LOFAR radio telescope. Astronomy and Astrophysics, 2013, 560, A98.	5.1	93
14	High time resolution and polarization properties of ASKAP-localized fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3335-3350.	4.4	93
15	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	4.7	92
16	Characterizing the Fast Radio Burst Host Galaxy Population and its Connection to Transients in the Local and Extragalactic Universe. Astronomical Journal, 2022, 163, 69.	4.7	91
17	SEARCHES FOR POINT-LIKE AND EXTENDED NEUTRINO SOURCES CLOSE TO THE GALACTIC CENTER USING THE ANTARES NEUTRINO TELESCOPE. Astrophysical Journal Letters, 2014, 786, L5.	8.3	88
18	The Spectral Properties of the Bright Fast Radio Burst Population. Astrophysical Journal Letters, 2019, 872, L19.	8.3	85

#	Article	IF	CITATIONS
19	Spectropolarimetric Analysis of FRB 181112 at Microsecond Resolution: Implications for Fast Radio Burst Emission Mechanism. Astrophysical Journal Letters, 2020, 891, L38.	8.3	82
20	Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 759, 69-74.	4.1	78
21	Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources. Astroparticle Physics, 2019, 111, 100-110.	4.3	71
22	Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes. Astrophysical Journal Letters, 2018, 868, L20.	8.3	64
23	First all-flavor neutrino pointlike source search with the ANTARES neutrino telescope. Physical Review D, 2017, 96, .	4.7	60
24	Search for muon neutrinos from gamma-ray bursts with the ANTARES neutrino telescope using 2008 to 2011 data. Astronomy and Astrophysics, 2013, 559, A9.	5.1	57
25	LUNASKA experiments using the Australia Telescope Compact Array to search for ultrahigh energy neutrinos and develop technology for the lunar Cherenkov technique. Physical Review D, 2010, 81, .	4.7	56
26	General description of electromagnetic radiation processes based on instantaneous charge acceleration in "endpoints― Physical Review E, 2011, 84, 056602.	2.1	54
27	Results from the search for dark matter in the Milky Way with 9 years of data of the ANTARES neutrino telescope. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 769, 249-254.	4.1	52
28	The <i>>z</i> â€"DM distribution of fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4775-4802.	4.4	52
29	Measurement of the atmospheric \hat{l} / 2 \hat{l} / 4 energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope. European Physical Journal C, 2013, 73, 1.	3.9	51
30	THE FIRST COMBINED SEARCH FOR NEUTRINO POINT-SOURCES IN THE SOUTHERN HEMISPHERE WITH THE ANTARES AND ICECUBE NEUTRINO TELESCOPES. Astrophysical Journal, 2016, 823, 65.	4.5	49
31	TANAMI blazars in the IceCube PeV-neutrino fields. Astronomy and Astrophysics, 2014, 566, L7.	5.1	46
32	Deep sea tests of a prototype of the KM3NeT digital optical module. European Physical Journal C, 2014, 74, 1.	3.9	46
33	The slope of the source-count distribution for fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1342-1353.	4.4	46
34	A polarized fast radio burst at low Galactic latitude. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	45
35	Chronicling the Host Galaxy Properties of the Remarkable Repeating FRB 20201124A. Astrophysical Journal Letters, 2021, 919, L23.	8.3	45
36	All-flavor Search for a Diffuse Flux of Cosmic Neutrinos with Nine Years of ANTARES Data. Astrophysical Journal Letters, 2018, 853, L7.	8.3	41

#	Article	IF	Citations
37	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 2017, 96, .	4.7	40
38	Limits on Precursor and Afterglow Radio Emission from a Fast Radio Burst in a Star-forming Galaxy. Astrophysical Journal Letters, 2020, 901, L20.	8.3	40
39	The fast radio burst population evolves, consistent with the star formation rate. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 510, L18-L23.	3.3	39
40	The sensitivity of the next generation of lunar Cherenkov observations to UHE neutrinos and cosmic rays. Astroparticle Physics, 2009, 30, 318-332.	4.3	36
41	Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 760, 143-148.	4.1	35
42	A population analysis of pulse broadening in ASKAP fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1382-1390.	4.4	35
43	New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope. Physical Review D, 2017, 96, .	4.7	33
44	Limits on the population of repeating fast radio bursts from the ASKAP/CRAFT lat50 survey. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5934-5950.	4.4	33
45	Which bright fast radio bursts repeat?. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2416-2427.	4.4	33
46	The prototype detection unit of the KM3NeT detector. European Physical Journal C, 2016, 76, 1.	3.9	32
47	Probabilistic Association of Transients to their Hosts (PATH). Astrophysical Journal, 2021, 911, 95.	4.5	32
48	Commensal discovery of four fast radio bursts during Parkes Pulsar Timing Array observations. Monthly Notices of the Royal Astronomical Society, 2019, 488, 868-875.	4.4	31
49	Limit on ultrahigh energy neutrino flux from the Parkes Lunar Radio Cherenkov experiment. Monthly Notices of the Royal Astronomical Society, 2007, 379, 1037-1041.	4.4	30
50	Search of dark matter annihilation in the galactic centre using the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 068-068.	5.4	30
51	LUNASKA experiment observational limits on UHE neutrinos from Centaurus A and the Galactic Centre. Monthly Notices of the Royal Astronomical Society, 2011, 410, 885-889.	4.4	29
52	Science with the Murchison Widefield Array: Phase I results and Phase II opportunities. Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	29
53	Search for high-energy neutrinos from bright GRBs with ANTARES. Monthly Notices of the Royal Astronomical Society, 2017, 469, 906-915.	4.4	27
54	Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA. European Physical Journal C, 2022, 82, 1.	3.9	27

#	Article	IF	Citations
55	A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 016-016.	5.4	26
56	A search for neutrino emission from the Fermi bubbles with the ANTARES telescope. European Physical Journal C, 2014, 74, 1.	3.9	25
57	Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope. Journal of Instrumentation, 2018, 13, P05035-P05035.	1.2	25
58	ANTARES and IceCube Combined Search for Neutrino Point-like and Extended Sources in the Southern Sky. Astrophysical Journal, 2020, 892, 92.	4.5	25
59	Intrinsic limits on resolutions in muon- and electron-neutrino charged-current events in the KM3NeT/ORCA detector. Journal of High Energy Physics, 2017, 2017, 1.	4.7	22
60	Using negative-latency gravitational wave alerts to detect prompt radio bursts from binary neutron star mergers with the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 489, L75-L79.	3.3	22
61	Optical and X-ray early follow-up of ANTARES neutrino alerts. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 062-062.	5.4	21
62	The KM3NeT potential for the next core-collapse supernova observation with neutrinos. European Physical Journal C, 2021, 81, 1.	3.9	21
63	Thinned simulations of extremely energetic showers in dense media for radio applications. Astroparticle Physics, 2009, 32, 100-111.	4.3	20
64	Limit on the ultrahigh-energy cosmic-ray flux with the Westerbork synthesis radio telescope. Physical Review D, 2010, 82, .	4.7	20
65	First results on dark matter annihilation in the Sun using the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 032-032.	5.4	20
66	Sperm whale long-range echolocation sounds revealed by ANTARES, a deep-sea neutrino telescope. Scientific Reports, 2017, 7, 45517.	3.3	20
67	Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units. European Physical Journal C, 2020, 80, 1.	3.9	20
68	Search for dark matter annihilation in the earth using the ANTARES neutrino telescope. Physics of the Dark Universe, 2017, 16, 41-48.	4.9	19
69	Constraining the contribution of Gamma-Ray Bursts to the high-energy diffuse neutrino flux with 10Âyr of ANTARES data. Monthly Notices of the Royal Astronomical Society, 2020, 500, 5614-5628.	4.4	19
70	The performance and calibration of the CRAFT fly's eye fast radio burst survey. Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	18
71	The fast radio burst dispersion measure distribution. Monthly Notices of the Royal Astronomical Society, 2021, 501, 5319-5329.	4.4	18
72	KM3NeT front-end and readout electronics system: hardware, firmware, and software. Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5, 1.	1.8	18

#	Article	IF	CITATIONS
73	Letter of interest for a neutrino beam from Protvino to KM3NeT/ORCA. European Physical Journal C, 2019, 79, 1.	3.9	17
74	Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model with ten years of ANTARES data. Journal of High Energy Physics, 2019, 2019, 1.	4.7	16
75	A southern sky search for repeating fast radio bursts using the Australian SKA Pathfinder. Monthly Notices of the Royal Astronomical Society, 2019, 486, 70-76.	4.4	16
76	A lunar radio experiment with the Parkes radio telescope for the LUNASKA project. Astroparticle Physics, 2015, 65, 22-39.	4.3	15
77	Event reconstruction for KM3NeT/ORCA using convolutional neural networks. Journal of Instrumentation, 2020, 15, P10005-P10005.	1.2	15
78	ANTARES constrains a blazar origin of two IceCube PeV neutrino events. Astronomy and Astrophysics, 2015, 576, L8.	5.1	15
79	The directional dependence of apertures, limits and sensitivity of the lunar Cherenkov technique to a UHE neutrino flux. Astroparticle Physics, 2009, 31, 392-398.	4.3	14
80	An Algorithm for the Reconstruction of Neutrino-induced Showers in the ANTARES Neutrino Telescope. Astronomical Journal, 2017, 154, 275.	4.7	14
81	gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes. Computer Physics Communications, 2020, 256, 107477.	7.5	14
82	Limit on the ultrahigh-energy neutrino flux from lunar observations with the Parkes radio telescope. Physical Review D, 2015, 91 , .	4.7	13
83	All-sky search for high-energy neutrinos from gravitational wave event GW170104 with the AntaresÂneutrino telescope. European Physical Journal C, 2017, 77, 1.	3.9	13
84	Optimized trigger for ultra-high-energy cosmic-ray and neutrino observations with the low frequency radio array. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 664, 171-185.	1.6	12
85	Murchison Widefield Array rapid-response observations of the short GRB 180805A. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	12
86	Astrometric accuracy of snapshot fast radio burst localisations with ASKAP. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	12
87	An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope. European Physical Journal C, 2017, 77, 419.	3.9	11
88	Ultimate precision in cosmic-ray radio detection â€" the SKA. EPJ Web of Conferences, 2017, 135, 02003.	0.3	11
89	ANTARES Search for Point Sources of Neutrinos Using Astrophysical Catalogs: A Likelihood Analysis. Astrophysical Journal, 2021, 911, 48.	4.5	11
90	Lunar radio Cherenkov observations of UHE neutrinos. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 604, S106-S111.	1.6	10

#	Article	IF	Citations
91	Detecting ultra high energy neutrinos with LOFAR. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 662, S26-S28.	1.6	10
92	Long-term monitoring of the ANTARES optical module efficiencies using $\40 mathrm $\{K\}$ \$\$ 40 K decays in sea water. European Physical Journal C, 2018, 78, 1.	3.9	10
93	Searches for clustering in the time integrated skymap of the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 001-001.	5.4	9
94	A search for time dependent neutrino emission from microquasars with the ANTARES telescope. Journal of High Energy Astrophysics, 2014, 3-4, 9-17.	6.7	9
95	Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 014-014.	5.4	9
96	MURCHISON WIDEFIELD ARRAY LIMITS ON RADIO EMISSION FROM ANTARES NEUTRINO EVENTS. Astrophysical Journal Letters, 2016, 820, L24.	8.3	9
97	Search for relativistic magnetic monopoles with five years of the ANTARES detector data. Journal of High Energy Physics, 2017, 2017, 1.	4.7	9
98	Overview of lunar detection of ultra-high energy particles and new plans for the SKA. EPJ Web of Conferences, 2017, 135, 04001.	0.3	9
99	Search for neutrino counterparts of gravitational-wave events detected by LIGO and Virgo during run O2 with the ANTARES telescope. European Physical Journal C, 2020, 80, 1.	3.9	9
100	Architecture and performance of the KM3NeT front-end firmware. Journal of Astronomical Telescopes, Instruments, and Systems, 2021, 7, .	1.8	9
101	Implementation and first results of the KM3NeT real-time core-collapse supernova neutrino search. European Physical Journal C, 2022, 82, 1.	3.9	9
102	Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 017-017.	5.4	8
103	A method to stabilise the performance of negatively fed KM3NeT photomultipliers. Journal of Instrumentation, 2016, 11, P12014-P12014.	1.2	8
104	Time-dependent search for neutrino emission from X-ray binaries with the ANTARES telescope. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 019-019.	5.4	8
105	Stacked search for time shifted high energy neutrinos from gamma ray bursts with the Antares neutrino telescope. European Physical Journal C, 2017, 77, 1.	3.9	8
106	The search for high-energy neutrinos coincident with fast radio bursts with the ANTARES neutrino telescope. Monthly Notices of the Royal Astronomical Society, 2019, 482, 184-193.	4.4	8
107	The Control Unit of the KM3NeT Data Acquisition System. Computer Physics Communications, 2020, 256, 107433.	7.5	8
108	Measurement of the Rate Distribution of the Population of Repeating Fast Radio Bursts: Implications for Progenitor Models. Astrophysical Journal Letters, 2020, 895, L22.	8.3	8

#	Article	IF	CITATIONS
109	Prospects for detecting ultra-high-energy particles with FAST. Research in Astronomy and Astrophysics, 2019, 19, 019.	1.7	6
110	A Search for Cosmic Neutrino and Gamma-Ray Emitting Transients in 7.3 yr of ANTARES and Fermi LAT Data. Astrophysical Journal, 2019, 886, 98.	4.5	6
111	Search for Neutrinos from the Tidal Disruption Events AT2019dsg and AT2019fdr with the ANTARES Telescope. Astrophysical Journal, 2021, 920, 50.	4.5	6
112	Status report and future prospects on LUNASKA lunar observations with ATCA. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 604, S112-S115.	1.6	5
113	Status and strategies of current LUNASKA lunar Cherenkov observations with the Parkes radio telescope. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 662, S95-S98.	1.6	5
114	Detecting radio emission from air showers with LOFAR. , 2013, , .		5
115	Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope. Astroparticle Physics, 2016, 78, 43-51.	4.3	5
116	ANTARES Neutrino Search for Time and Space Correlations with IceCube High-energy Neutrino Events. Astrophysical Journal, 2019, 879, 108.	4.5	5
117	Lunar detection of ultra-high-energy cosmic rays and neutrinos with the Square Kilometre Array. , 2015, , .		5
118	Precision measurements of cosmic ray air showers with the SKA. , 2015, , .		5
119	Nature of radio-wave radiation from particle cascades. Physical Review D, 2022, 105, .	4.7	5
120	Science with the Murchison Widefield Array: Phase I results and Phase II opportunities – Corrigendum. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	4
121	Sensitivity to light sterile neutrino mixing parameters with KM3NeT/ORCA. Journal of High Energy Physics, 2021, 2021, 1.	4.7	4
122	Combined sensitivity of JUNO and KM3NeT/ORCA to the neutrino mass ordering. Journal of High Energy Physics, 2022, 2022, 1.	4.7	4
123	The directional dependence of the lunar Cherenkov technique for UHE neutrino detection. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 604, S222-S224.	1.6	3
124	The Lunar Cherenkov techniqueâ€"Answering the unanswered questions. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 662, S12-S19.	1.6	3
125	LUNASKA neutrino search with the Parkes and ATCA telescopes. , 2013, , .		3
126	An Ultra-High Time Resolution Cosmic-Ray Detection Mode for the Murchison Widefield Array. Journal of Astronomical Instrumentation, 2021, 10, .	1.5	3

#	Article	IF	CITATIONS
127	Electromagnetic radiation in the Tamm problem. , 2013, , .		2
128	Model-independent search for neutrino sources with the ANTARES neutrino telescope. Astroparticle Physics, 2020, 114, 35-47.	4.3	2
129	The SKA particle array prototype: The first particle detector at the Murchison Radio-astronomy Observatory. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 973, 164168.	1.6	2
130	Search for non-standard neutrino interactions with 10 years of ANTARES data. Journal of High Energy Physics, 2022, 2022, .	4.7	2
131	Ultra-high-energy cosmic ray and neutrino detection using the Moon. Nuclear Physics, Section B, Proceedings Supplements, 2011, 212-213, 128-133.	0.4	1
132	FRATs: a search for Fast Radio Transients with LOFAR. , 2011, , .		1
133	Comparison of the Parkes and FAST FRB DM distribution. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2093-2098.	4.4	1
134	Coherent Cherenkov radio emission from EeV showers in dense media through thinned simulations. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 604, S27-S29.	1.6	0
135	Recent Results from the ANTARES Neutrino Telescope. , 2017, , 97-113.		0