
Hai-Bin Chu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5476411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective Growth of Well-Aligned Semiconducting Single-Walled Carbon Nanotubes. Nano Letters, 2009, 9, 800-805.	4.5	426
2	Why Single-Walled Carbon Nanotubes Can Be Dispersed in Imidazolium-Based Ionic Liquids. ACS Nano, 2008, 2, 2540-2546.	7.3	296
3	Horizontally Aligned Single-Walled Carbon Nanotube on Quartz from a Large Variety of Metal Catalysts. Nano Letters, 2008, 8, 2576-2579.	4.5	235
4	Ultralow Feeding Gas Flow Guiding Growth of Large-Scale Horizontally Aligned Single-Walled Carbon Nanotube Arrays. Nano Letters, 2007, 7, 2073-2079.	4.5	189
5	Carbon nanotubes combined with inorganic nanomaterials: Preparations and applications. Coordination Chemistry Reviews, 2010, 254, 1117-1134.	9.5	145
6	Single Crystalline Trigonal Selenium Nanotubes and Nanowires Synthesized by Sonochemical Process. Crystal Growth and Design, 2005, 5, 911-916.	1.4	115
7	Decoration of Gold Nanoparticles on Surface-Grown Single-Walled Carbon Nanotubes for Detection of Every Nanotube by Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2009, 131, 14310-14316.	6.6	97
8	Shape-Controlled Synthesis of CdS Nanocrystals in Mixed Solvents. Crystal Growth and Design, 2005, 5, 1801-1806.	1.4	93
9	Ionicâ€Liquidâ€Assisted Preparation of Carbon Nanotubeâ€5upported Uniform Noble Metal Nanoparticles and Their Enhanced Catalytic Performance. Advanced Functional Materials, 2010, 20, 3747-3752.	7.8	90
10	Overcoming the Deactivation of Pt/CNT by Introducing CeO ₂ for Selective Base-Free Glycerol-to-Glyceric Acid Oxidation. ACS Catalysis, 2020, 10, 3832-3837.	5.5	55
11	Sacrificial template growth of CdS nanotubes from Cd(OH)2 nanowires. Journal of Solid State Chemistry, 2006, 179, 96-102.	1.4	49
12	Creation of Cadmium Sulfide Nanostructures Using AFM Dip-Pen Nanolithography. Journal of Physical Chemistry B, 2005, 109, 22337-22340.	1.2	45
13	Hydroxyl-rich ceriaÂhydrate nanoparticles enhancing the alcohol electrooxidation performance of Pt catalysts. Journal of Materials Chemistry A, 2018, 6, 2318-2326.	5.2	43
14	Direct Preparation and Patterning of Iron Oxide Nanoparticles via Microcontact Printing on Silicon Wafers for the Growth of Single-Walled Carbon Nanotubes. Chemistry of Materials, 2006, 18, 4109-4114.	3.2	42
15	Controllable preparation and properties of composite materials based on ceria nanoparticles and carbon nanotubes. Journal of Solid State Chemistry, 2008, 181, 2620-2625.	1.4	42
16	Preparation and electrochemical properties of MnO2nanosheets attached to Au nanoparticles on carbon nanotubes. Dalton Transactions, 2011, 40, 2332-2337.	1.6	42
17	Synthesis, crystal structure, luminescent property and antibacterial activity of lanthanide ternary complexes with 2,4,6-tri(2-pyridyl)-s-triazine. Journal of Organometallic Chemistry, 2012, 716, 167-174.	0.8	42
18	Synthesis, crystal structures and fluorescence properties of dinuclear Tb(III) and Sm(III) complexes with 2,4,6-tri(2-pyridyl)-1,3,5-triazine and halogenated benzoic acid. Inorganica Chimica Acta, 2014, 414, 39-45.	1.2	42

Наі-Віл Сни

#	Article	IF	CITATIONS
19	Rational preparation of faceted platinum nanocrystals supported on carbon nanotubes with remarkably enhanced catalytic performance. Chemical Communications, 2009, , 7167.	2.2	39
20	Kelvin probe force microscopy study on nanotriboelectrification. Applied Physics Letters, 2010, 96, .	1.5	38
21	Synthesis and fluorescence properties of ten lanthanide benzene-1,3,5-tricarboxylate complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 77, 419-423.	2.0	37
22	Core–shell Ag@SiO2 nanoparticles of different silica shell thicknesses: Preparation and their effects on photoluminescence of lanthanide complexes. Materials Research Bulletin, 2015, 71, 116-121.	2.7	37
23	Graphene-Quantum-Dots-induced facile growth of porous molybdenum doped Ni3S2 nanoflakes as efficient bifunctional electrocatalyst for overall water splitting. Electrochimica Acta, 2019, 304, 487-494.	2.6	36
24	Direct observation of the strong interaction between carbon nanotubes and quartz substrate. Nano Research, 2009, 2, 903.	5.8	31
25	Synthesis, characterization and luminescence property of ternary rare earth complexes with azatriphenylenes as highly efficient sensitizers. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 219, 243-249.	2.0	29
26	Facet effect of Pt nanocrystals on catalytical properties toward glycerol oxidation reaction. Journal of Catalysis, 2020, 381, 434-442.	3.1	29
27	Inorganic hierarchical nanostructures induced by concentration difference and gradient. Nano Research, 2008, 1, 213-220.	5.8	21
28	Fluorescent studies on the interaction of DNA and ternary lanthanide complexes with cinnamic acidâ€phenanthroline and antibacterial activities testing. Luminescence, 2015, 30, 131-136.	1.5	21
29	Effect of the Composition of Lanthanide Complexes on Their Luminescence Enhancement by Ag@SiO2 Core-Shell Nanoparticles. Nanomaterials, 2018, 8, 98.	1.9	21
30	Fabricating Nitrogenâ€Rich Feâ^'N/C Electrocatalysts through CeO ₂ â€Assisted Pyrolysis for Enhanced Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 4040-4048.	1.7	20
31	Visualization of individual single-walled carbon nanotubes under an optical microscope as a result of decoration with gold nanoparticles. Carbon, 2011, 49, 1182-1188.	5.4	19
32	Crystal structure and photoluminescence of two europium compounds with phenoxyacetic acid and 2,4,6-tri(2-pyridyl)-s-triazine. Dalton Transactions, 2014, 43, 2620-2628.	1.6	19
33	DNA binding and antibacterial properties of ternary lanthanide complexes with salicylic acid and phenanthroline. Applied Organometallic Chemistry, 2014, 28, 162-168.	1.7	19
34	High-density nickel phosphide nanoparticles loaded reduced graphene oxide on nickel foam for enhanced alkaline and neutral water splitting. Electrochimica Acta, 2020, 362, 137172.	2.6	18
35	Gold Nanoparticles on Nanosheets Derived from Layered Rare-Earth Hydroxides for Catalytic Glycerol-to-Lactic Acid Conversion. ACS Applied Materials & Interfaces, 2021, 13, 522-530.	4.0	18
36	Site-Specific Deposition of Gold Nanoparticles on SWNTs. Journal of Physical Chemistry C, 2008, 112, 13437-13441.	1.5	17

Наі-Віл Сни

#	Article	IF	CITATIONS
37	Synthesis, characterization and enhanced luminescence of terbium complexes with 2-pyrazinecarboxylic acid and butanedioic acid by inert-fluorescent lanthanide ions. Journal of Rare Earths, 2013, 31, 32-36.	2.5	17
38	Luminescence properties and crystal structure of europium complexes with phenoxyacetic acid and 2,4,6-tri(2-pyridyl)-s-triazine. Journal of Luminescence, 2015, 160, 238-244.	1.5	17
39	Crystal structure and photoluminescence of europium, terbium and samarium compounds with halogen-benzoate and 2,4,6-tri(2-pyridyl)-s-triazine. Journal of Luminescence, 2016, 177, 22-30.	1.5	17
40	Fluorescence enhancement of Tb3+ complexes by adding silica-coated silver nanoparticles. Science China Chemistry, 2015, 58, 979-985.	4.2	16
41	Construction of a molybdenum and copper co-doped nickel phosphide with lattice distortion for highly efficient electrochemical water splitting. Dalton Transactions, 2021, 50, 9690-9694.	1.6	16
42	Preparation and properties of CdS/Au composite nanorods and hollow Au tubes. Science Bulletin, 2010, 55, 921-926.	1.7	15
43	Fluorescence enhancement of europium complexes by core–shell Ag@SiO2 nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 151, 716-722.	2.0	15
44	Effect of CeO ₂ morphology on the catalytic properties of Au/CeO ₂ for base-free glucose oxidation. Catalysis Science and Technology, 2022, 12, 1313-1323.	2.1	14
45	Tuning the luminescence properties of lanthanide coordination polymers with Ag@SiO ₂ nanoparticles. Dalton Transactions, 2017, 46, 6447-6455.	1.6	11
46	In Situ Epitaxial Growth of Triangular CdS Nanoplates on Mica by Dip-Pen Nanolithography. Journal of Physical Chemistry C, 2008, 112, 18938-18942.	1.5	10
47	Synthesis, characterization and luminescent property of metal-ion-doped terbium complexes of 2,3-Pyrazinedicarboxylate. Journal of Luminescence, 2012, 132, 1414-1419.	1.5	10
48	Study on silicon oxide coated on silver nanocrystal to enhance fluorescence intensity of rare earth complexes. Journal of Luminescence, 2014, 154, 402-409.	1.5	9
49	Seed-Mediated Growth of ZnO Nanorods on Multiwalled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2008, 8, 4441-4446.	0.9	8
50	Controlled Preparation of Inorganic Nanostructures on Substrates by Dipâ€Pen Nanolithography. Chemistry - an Asian Journal, 2010, 5, 980-990.	1.7	8
51	Patterning Nanoparticles by Microcontact Printing and Further Growth of Oneâ€Dimensional Nanomaterials. European Journal of Inorganic Chemistry, 2010, 2010, 4357-4362.	1.0	8
52	Synthesis, crystal structure and fluorescence properties of terbium complexes with phenoxyacetic acid and 2,4,6â€trisâ€(2â€pyridyl)â€ <i>s</i> à€"triazine. Luminescence, 2015, 30, 835-841.	1,5	8
53	Fluorescence enhancement of europium nitrobenzoates by Ag@SiO 2 nanoparticles in solution. Journal of Luminescence, 2017, 186, 255-261.	1.5	8
54	Direct Exfoliation of Natural SiO2-Containing Molybdenite in Isopropanol: A Cost Efficient Solution for Large-Scale Production of MoS2 Nanosheetes. Nanomaterials, 2018, 8, 843.	1.9	8

Наі-Віл Сни

#	Article	IF	CITATIONS
55	Synthesis, characterization and luminescent properties of europium complexes with 2,4,6â€trisâ€(2â€pyridyl)â€ <i>s</i> à€triazine as highly efficient sensitizers. Luminescence, 2015, 30, 1360-1366.	1.5	7
56	Preparation, Crystal structure and Luminescence Properties of Lanthanide Complexes with 2,4,6-tri(pyridin-2-yl)-1,3,5-triazine and Organic Carboxylic Acid. Crystals, 2017, 7, 139.	1.0	7
57	Factors affecting the metal-enhanced luminescence of lanthanide complexes by Ag@SiO2 nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400, 112678.	2.0	7
58	High speed atomic force microscope lithography driven by electrostatic interaction. Applied Physics Letters, 2007, 91, .	1.5	6
59	Crystal structures and luminescence properties of lanthanide complexes with 4-bromobenzoate and nitrogen heterocyclic ligands. Journal of Luminescence, 2019, 215, 116638.	1.5	6
60	Tuning the luminescence properties of samarium and dysprosium complexes by Ag@SiO2 nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 365, 119-124.	2.0	5
61	Tuning the Product Selectivity toward the High Yield of Glyceric Acid in Ptâ^'CeO ₂ /CNT Electrocatalyzed Oxidation of Glycerol. ChemCatChem, 2022, 14, .	1.8	5
62	Roles of hydroxyl and oxygen vacancy of CeO2·xH2O in Pd-catalyzed ethanol electro-oxidation. Science China Chemistry, 2022, 65, 877-884.	4.2	4
63	Surface Plasmon Resonance Enhanced Luminescence of Europium Complexes with Ag@SiO ₂ Core-Shell Structure. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2014, 30, 2328-2334.	2.2	3
64	Enhanced adsorption performance for aromatic sulfur compounds over a hierarchical structured AgX zeolite. Environmental Science Atmospheres, 2021, 1, 569-576.	0.9	3
65	Enhanced adsorption performance of subordinate magnesium sites in pinhole magnesium oxide nanosheets with rich oxygen vacancies. , 2022, 1, 105-113.		3
66	Highly selective electrodeposition of sub-10 nm crystalline noble metallic nanorods inside vertically aligned multiwall carbon nanotubes. Nanotechnology, 2016, 27, 275604.	1.3	1
67	Understanding enhancing mechanism of Pr6O11 and Pr(OH)3 in methanol electrooxidation. Journal of Rare Earths, 2022, 40, 85-92.	2.5	1