
Masatoshi Shioya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5475353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Control of diameter, morphology, and structure of PVDF nanofiber fabricated by electrospray deposition. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 779-786.	2.4	108
2	Improving the gas barrier properties of Fe3O4/graphite nanoplatelet reinforced nanocomposites by a low magnetic field induced alignment. Composites Science and Technology, 2014, 99, 124-130.	3.8	71
3	Mechanical properties of woven laminates and felt composites using carbon fibers. Part 1: in-plane properties. Composites Science and Technology, 2004, 64, 2221-2229.	3.8	44
4	Estimation of fibre and interfacial shear strength by using a single-fibre composite. Composites Science and Technology, 1995, 55, 33-39.	3.8	33
5	A comparative study of fracture behavior between carbon black/poly(ethylene terephthalate) and multiwalled carbon nanotube/poly(ethylene terephthalate) composite films. Journal of Applied Polymer Science, 2007, 106, 152-160.	1.3	29
6	Small-Angle X-ray Scattering Study on the Tensile Fracture Process of Poly(ethylene terephthalate) Fiber. Macromolecules, 2008, 41, 4758-4765.	2.2	29
7	Characterization of microvoids in mulberry and tussah silk fibers using stannic acid treatment. Journal of Applied Polymer Science, 1999, 73, 363-367.	1.3	26
8	Synchrotron radiation small-angle X-ray scattering study on fracture process of carbon nanotube/poly(ethylene terephthalate) composite films. Composites Science and Technology, 2007, 67, 3209-3218.	3.8	25
9	Relationship between axial compression strength and longitudinal microvoid size for PAN-based carbon fibers. Carbon, 2012, 50, 2860-2869.	5.4	23
10	Structure change of carbon fibers during axial compression. Carbon, 2013, 57, 416-424.	5.4	23
11	Structure changes during tensile deformation and mechanical properties of a twisted carbon nanotube yarn. Carbon, 2013, 60, 193-201.	5.4	22
12	Correlations between the abrasive wear, fatigue, and tensile properties of filler-dispersed polyamide 6. Wear, 2015, 338-339, 297-306.	1.5	22
13	Mechanical properties of woven laminates and felt composites using carbon fibers. Part 2: interlaminar properties. Composites Science and Technology, 2004, 64, 2231-2238.	3.8	21
14	Reduction in tensile strength of polyacrylonitrile-based carbon fibers in liquids and its application to defect analysis. Carbon, 2013, 65, 63-70.	5.4	21
15	Influence of swelling of noncrystalline regions in silk fibers on modification with methacrylamide. Journal of Applied Polymer Science, 1996, 59, 51-56.	1.3	20
16	Mechanical properties of tussah silk fibers treated with methacrylamide. Journal of Applied Polymer Science, 1997, 65, 2051-2057.	1.3	18
17	Mechanical properties of silk fibers treated with methacrylamide. Journal of Applied Polymer Science, 1996, 61, 1359-1364.	1.3	17
18	Chemically Retted Kenaf Fibers. Journal of Fiber Science and Technology, 2005, 61, 115-117.	0.0	12

MASATOSHI SHIOYA

#	Article	IF	CITATIONS
19	Determination of intrinsic strength of carbon fibers. Carbon, 2016, 100, 208-213.	5.4	12
20	Mechanism for anisotropic thermal expansion of polyamide fibers. Sensors and Actuators B: Chemical, 2021, 344, 130262.	4.0	11
21	A method to determine wear rates of fibers and its application to polymeric fibers added with inorganic fillers. Wear, 2010, 268, 1148-1156.	1.5	10
22	Analysis on Abrasive Wear Rate of VGCF/Polyamide 6 Composite Fibers. Tribology Online, 2011, 6, 207-218.	0.2	10
23	Activation energy of structural development for phenol formaldehyde resin-based carbon fibers. Carbon, 2001, 39, 1869-1878.	5.4	9
24	Small-angle X-ray scattering of long-period structures forming bundles. Polymer, 2006, 47, 3616-3628.	1.8	9
25	Influence of viscoelasticity on friction coefficient of abrasive wear for filler-dispersed polyamide 6. Wear, 2015, 324-325, 17-26.	1.5	8
26	Carbonaceous adsorbents produced from coffee lees. Journal of Materials Science, 2009, 44, 1137-1139.	1.7	7
27	Analysis of Defects in Poly(ethylene terephthalate) Fibers. Journal of Fiber Science and Technology, 2004, 60, 346-351.	0.0	7
28	Variation of Longitudinal Modulus with Twist for Yarns Composed of High Modulus Fibers. Textile Reseach Journal, 2001, 71, 928-936.	1.1	6
29	Wear Resistance and Tensile Properties of Filler-added Polyamide 6 Fibers. Journal of Fiber Science and Technology, 2011, 67, 109-118.	0.0	6
30	CHARACTERIZATION OF MICROVOIDS IN WILD SILK FIBERS USING STANNIC ACID TREATMENT. Journal of Macromolecular Science - Physics, 2001, 40, 1069-1078.	0.4	5
31	Analysis of Swelling Behavior of Silk Fibers by Small-Angle X-Ray Scattering Journal of Fiber Science and Technology, 1994, 50, 199-207.	0.0	4
32	Wear Resistance and Mechanical Properties of Polymeric Fibers Filled with Inorganic Fillers. Materials Research Society Symposia Proceedings, 2006, 977, 1.	0.1	4
33	Carbonization behavior of l-tryptophan and gluten. Journal of Materials Science, 2007, 42, 2076-2080.	1.7	4
34	Morphological study on carbon fibers and films derived from polyoxadiazole Journal of Fiber Science and Technology, 1992, 48, 379-383.	0.0	4
35	Utilization of Triacetylcellulose Waste for the Production of Carbonaceous Adsorbents. Journal of Polymers and the Environment, 2012, 20, 626-630.	2.4	3
36	Swelling behavior of high-speed spun poly (ethylene terephthalate) fibers. Journal of Macromolecular Science - Physics, 2002, 41, 397-406.	0.4	2

MASATOSHI SHIOYA

#	Article	IF	CITATIONS
37	Extraordinarily large swelling energy of iodineâ€treated poly(vinyl alcohol) demonstrated by jump of a film. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1357-1365.	2.4	2
38	CONSIDERATION ON THE EFFECT OF RESIN PROPERTIES ON TENSILE STRENGTH OF CARBON FIBER-RESIN COMPOSITE STRANDS. Journal of Fiber Science and Technology, 1984, 40, T13-T19.	0.0	2
39	Temperature-Time Superposition of Resistivity of Carbon Fibers during Heat-treatment by Direct Currenting. Tanso, 1994, 1994, 119-123.	0.1	2
40	Changes in fiber structure of Japanese oak silk fibers by the treatment with methacrylamide. Journal of Macromolecular Science - Physics, 1997, 36, 503-511.	0.4	1
41	Analysis of Structure and Swelling Behavior of Silk Fibers Treated with a Mixture of Glyoxal and Urethane Resins Journal of Fiber Science and Technology, 1994, 50, 505-509.	0.0	1
42	Fatigue Mechanism Analysed Based on the Changes in Microstructure and Axial Compression Strength of a Poly(<i>p</i> -phenylene-2,6-benzobisoxazole) Fiber. Journal of Fiber Science and Technology, 2019, 75, 186-192.	0.2	0
43	Influences of Fundamental Characteristics of Weft Yarns and Decatizing Treatment on Mechanical Properties of Silk Necktie Fabrics. Journal of the Textile Machinery Society of Japan English Edition, 1999, 45, 1-5.	0.1	0
44	Analysis on Fracture Behavior of High Strength Fibers Using Micromechanical Tests. Seikei-Kakou, 2016, 28, 352-356.	0.0	0
45	Maximum available tensile strength of carbon fibers. Advanced Materials Letters, 2018, 9, 885-888.	0.3	0
46	Viscoelastic Characteristics in Fragmentation Tests of Carbon Fiber and Glass Fiber Reinforced Polypropylene Composites. Journal of the Japan Society for Composite Materials, 2020, 46, 204-211.	0.1	0