Yves Chabal

List of Publications by Citations

Source: https://exaly.com/author-pdf/5475314/yves-chabal-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

29,485 89 158 424 h-index g-index citations papers 6.6 6.93 31,497 435 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
424	Structural evolution during the reduction of chemically derived graphene oxide. <i>Nature Chemistry</i> , 2010 , 2, 581-7	17.6	1399
423	Ideal hydrogen termination of the Si (111) surface. <i>Applied Physics Letters</i> , 1990 , 56, 656-658	3.4	1301
422	Hydrothermal Synthesis of Graphene-TiO2 Nanotube Composites with Enhanced Photocatalytic Activity. <i>ACS Catalysis</i> , 2012 , 2, 949-956	13.1	754
421	The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 19761-19781	3.8	641
420	Unusual infrared-absorption mechanism in thermally reduced graphene oxide. <i>Nature Materials</i> , 2010 , 9, 840-5	27	629
419	Infrared spectroscopy of Si(111) and Si(100) surfaces after HF treatment: Hydrogen termination and surface morphology. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1989 , 7, 2104-2109	2.9	613
418	Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. <i>Nature Communications</i> , 2012 , 3, 1298	17.4	465
417	Comparison of Si(111) surfaces prepared using aqueous solutions of NH4F versus HF. <i>Applied Physics Letters</i> , 1991 , 58, 1656-1658	3.4	453
416	Room-temperature metastability of multilayer graphene oxide films. <i>Nature Materials</i> , 2012 , 11, 544-9	27	449
415	Infrared spectroscopy of Si(111) surfaces after HF treatment: Hydrogen termination and surface morphology. <i>Applied Physics Letters</i> , 1988 , 53, 998-1000	3.4	426
414	Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal-organic framework. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 1412-5	16.4	398
413	Attachment of 3-(Aminopropyl)triethoxysilane on silicon oxide surfaces: dependence on solution temperature. <i>Langmuir</i> , 2008 , 24, 12963-71	4	345
412	Mechanism of HF etching of silicon surfaces: A theoretical understanding of hydrogen passivation. <i>Physical Review Letters</i> , 1990 , 65, 504-507	7.4	321
411	Atomic-scale conversion of clean Si(111):H-1 x 1 to Si(111)-2 x 1 by electron-stimulated desorption. <i>Physical Review Letters</i> , 1990 , 65, 1917-1920	7.4	320
410	New ordered structure for the H-saturated Si(100) surface: The (3 x 1) phase. <i>Physical Review Letters</i> , 1985 , 54, 1055-1058	7.4	309
409	Size, shape, and composition of luminescent species in oxidized Si nanocrystals and H-passivated porous Si. <i>Physical Review B</i> , 1995 , 52, 4910-4925	3.3	308
408	The role of intercalated water in multilayered graphene oxide. <i>ACS Nano</i> , 2010 , 4, 5861-8	16.7	303

407	Stability and Hydrolyzation of Metal Organic Frameworks with Paddle-Wheel SBUs upon Hydration. <i>Chemistry of Materials</i> , 2012 , 24, 3153-3167	9.6	300
406	Surface Infrared Study of Si(100)-(21)H. <i>Physical Review Letters</i> , 1984 , 53, 282-285	7.4	288
405	Chemical etching of vicinal Si(111): Dependence of the surface structure and the hydrogen termination on the pH of the etching solutions. <i>Journal of Chemical Physics</i> , 1991 , 95, 2897-2909	3.9	281
404	HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition. <i>Applied Physics Letters</i> , 2005 , 86, 152904	3.4	280
403	Vanadium Oxide Nanowire arbon Nanotube Binder-Free Flexible Electrodes for Supercapacitors. <i>Advanced Energy Materials</i> , 2011 , 1, 936-945	21.8	276
402	On the mechanism of the hydrogen-induced exfoliation of silicon. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 1997 , 15, 1065		272
401	Dimensions of luminescent oxidized and porous silicon structures. <i>Physical Review Letters</i> , 1994 , 72, 26	4 8. 2 65	1264
400	Tuning the gate opening pressure of Metal-Organic Frameworks (MOFs) for the selective separation of hydrocarbons. <i>Journal of the American Chemical Society</i> , 2012 , 134, 15201-4	16.4	246
399	Highly Efficient Luminescent Metal-Organic Framework for the Simultaneous Detection and Removal of Heavy Metals from Water. <i>ACS Applied Materials & Detection and Removal of Heavy Metals from Water and Materials & Detection and Materials & Detection and Removal of Heavy Metals from Water and Materials & Detection and Removal of Heavy Metals from Water and Materials & Detection and Removal of Heavy Metals from Water and Materials & Detection and Removal of Heavy Metals from Water and Materials & Detection & Detection and Materials & Detection & Detectio</i>	9.5	240
398	Synthesis, Characterization, and Photocatalytic Activity of Y-Doped CeO2 Nanorods. <i>ACS Catalysis</i> , 2014 , 4, 577-584	13.1	237
397	Properties of high Igate dielectrics Gd2O3 and Y2O3 for Si. <i>Journal of Applied Physics</i> , 2001 , 89, 3920-39	9 27 5	237
396	Lifetime of an adsorbate-substrate vibration: H on Si(111). <i>Physical Review Letters</i> , 1990 , 64, 2156-2159	7.4	236
395	Metal contacts on physical vapor deposited monolayer MoS2. ACS Nano, 2013, 7, 11350-7	16.7	233
394	Adsorbate-substrate resonant interactions observed for CO on Cu(100) in the far infrared. <i>Physical Review Letters</i> , 1990 , 65, 480-483	7.4	232
393	Coupling of an adsorbate vibration to a substrate surface phonon: H on Si(111). <i>Physical Review Letters</i> , 1990 , 65, 1124-1127	7.4	227
392	High L gate dielectrics Gd2O3 and Y2O3 for silicon. <i>Applied Physics Letters</i> , 2000 , 77, 130-132	3.4	226
391	Infrared spectroscopic analysis of the Si/SiO2 interface structure of thermally oxidized silicon. <i>Journal of Applied Physics</i> , 2000 , 87, 1322-1330	2.5	224
390	Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2363-2372	16.4	200

389	Initial H2O-induced Oxidation of Si(100)[[2f]). Physical Review Letters, 1997, 79, 2851-2854	7.4	195
388	Evidence of dissociation of water on the Si(100)2 🗈 surface. <i>Physical Review B</i> , 1984 , 29, 6974-6976	3.3	191
387	Metallic contact formation for molecular electronics: interactions between vapor-deposited metals and self-assembled monolayers of conjugated mono- and dithiols. <i>Langmuir</i> , 2004 , 20, 1539-42	4	185
386	Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor. <i>ACS Applied Materials & Description</i> (2013), 5, 179-85	9.5	169
385	Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. <i>Nature Communications</i> , 2018 , 9, 1745	17.4	166
384	Enhancing gas adsorption and separation capacity through ligand functionalization of microporous metal-organic framework structures. <i>Chemistry - A European Journal</i> , 2011 , 17, 5101-9	4.8	158
383	Genipin-induced changes in collagen gels: correlation of mechanical properties to fluorescence. Journal of Biomedical Materials Research - Part A, 2008 , 87, 308-20	5.4	158
382	Microscopic CO diffusion on a Pt(111) surface by time-resolved infrared spectroscopy. <i>Physical Review Letters</i> , 1988 , 61, 2778-2781	7.4	158
381	Electronic damping of hydrogen vibration on the W(100) surface. <i>Physical Review Letters</i> , 1985 , 55, 845-	-8 / 4.8	155
380	Hydrogen chemisorption on Si(111)-(7½) and -(1½) surfaces. A comparative infrared study. <i>Physical Review B</i> , 1983 , 28, 4472-4479	3.3	150
379	Electronic structure and its dependence on local order for H/Si(111)-(1 x 1) surfaces. <i>Physical Review Letters</i> , 1993 , 70, 1992-1995	7.4	145
378	Nucleation and interface formation mechanisms in atomic layer deposition of gate oxides. <i>Applied Physics Letters</i> , 2003 , 82, 4758-4760	3.4	144
377	Infrared linewidths and vibrational lifetimes at surfaces: H on Si(100). <i>Physical Review B</i> , 1985 , 31, 1184-	-131 3 86	143
376	Sensing the charge state of single gold nanoparticles via work function measurements. <i>Nano Letters</i> , 2015 , 15, 51-5	11.5	137
375	Hydride formation on the Si(100):H2O surface. <i>Physical Review B</i> , 1984 , 29, 3677-3680	3.3	131
374	Hydrogen passivation of germanium (100) surface using wet chemical preparation. <i>Applied Physics Letters</i> , 2005 , 87, 253101	3.4	128
373	Competitive Coadsorption of CO2 with H2O, NH3, SO2, NO, NO2, N2, O2, and CH4 in M-MOF-74 (M = Mg, Co, Ni): The Role of Hydrogen Bonding. <i>Chemistry of Materials</i> , 2015 , 27, 2203-2217	9.6	126
372	Synthesis and Characterization of Conjugated Mono- and Dithiol Oligomers and Characterization of Their Self-Assembled Monolayers. <i>Langmuir</i> , 2003 , 19, 4272-4284	4	126

(2013-2013)

371	Vanadium oxide nanowire liGraphene binder free nanocomposite paper electrodes for supercapacitors: A facile green approach. <i>Journal of Power Sources</i> , 2013 , 230, 130-137	8.9	125
370	Field emission from atomically thin edges of reduced graphene oxide. ACS Nano, 2011, 5, 4945-52	16.7	125
369	Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro. <i>Journal of Applied Physics</i> , 2010 , 108, 084323	2.5	125
368	Infrared characterization of interfacial Si-O bond formation on silanized flat SiO2/Si surfaces. <i>Langmuir</i> , 2010 , 26, 4563-6	4	123
367	Simultaneous Trapping of C H and C H from a Ternary Mixture of C H /C H in a Robust Metal-Organic Framework for the Purification of C H. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16067-16071	16.4	121
366	Water interactions in metal organic frameworks. <i>CrystEngComm</i> , 2015 , 17, 247-260	3.3	120
365	Water Reaction Mechanism in Metal Organic Frameworks with Coordinatively Unsaturated Metal Ions: MOF-74. <i>Chemistry of Materials</i> , 2014 , 26, 6886-6895	9.6	118
364	Nanopatterning Si(111) surfaces as a selective surface-chemistry route. <i>Nature Materials</i> , 2010 , 9, 266-7	'1 27	118
363	CO diffusion on Pt(111) with time-resolved infrared-pulsed molecular beam methods: Critical tests and analysis. <i>Journal of Chemical Physics</i> , 1990 , 93, 9113-9129	3.9	118
362	Nanochemistry at the atomic scale revealed in hydrogen-induced semiconductor surface metallization. <i>Nature Materials</i> , 2003 , 2, 253-8	27	113
361	Alkaline deoxygenated graphene oxide for supercapacitor applications: An effective green alternative for chemically reduced graphene. <i>Journal of Power Sources</i> , 2012 , 215, 1-10	8.9	110
360	Silicon Epoxide: Unexpected Intermediate during Silicon Oxide Formation. <i>Physical Review Letters</i> , 1998 , 81, 3908-3911	7.4	109
359	Enhanced initial growth of atomic-layer-deposited metal oxides on hydrogen-terminated silicon. <i>Applied Physics Letters</i> , 2003 , 83, 740-742	3.4	108
358	RPM3: a multifunctional microporous MOF with recyclable framework and high H2 binding energy. <i>Inorganic Chemistry</i> , 2009 , 48, 7165-73	5.1	107
357	Manganese oxide nanorod@raphene/vanadium oxide nanowire@raphene binder-free paper electrodes for metal oxide hybrid supercapacitors. <i>Nano Energy</i> , 2013 , 2, 966-975	17.1	106
356	Understanding and controlling water stability of MOF-74. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 517	6 <u>15</u> 183	3 104
355	Hydrogen Vibration on Si(111) 7 🗗: Evidence for a Unique Chemisorption Site. <i>Physical Review Letters</i> , 1983 , 50, 1850-1853	7.4	103
354	Mechanism of Preferential Adsorption of SO2 into Two Microporous Paddle Wheel Frameworks M(bdc)(ted)0.5. <i>Chemistry of Materials</i> , 2013 , 25, 4653-4662	9.6	102

353	Interfacial charge distributions in carbon-supported palladium catalysts. <i>Nature Communications</i> , 2017 , 8, 340	17.4	101
352	Chemical properties of oxidized silicon carbide surfaces upon etching in hydrofluoric acid. <i>Journal of the American Chemical Society</i> , 2009 , 131, 16808-13	16.4	100
351	Exfoliated graphite nanoplatelets 1/205 nanotube composite electrodes for supercapacitors. Journal of Power Sources, 2012, 203, 227-232	8.9	99
350	Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps. <i>Nature Communications</i> , 2017 , 8, 485	17.4	99
349	Metal-graphene-metal sandwich contacts for enhanced interface bonding and work function control. <i>ACS Nano</i> , 2012 , 6, 5381-7	16.7	99
348	Nature of Graphene Edges: A Review. <i>Japanese Journal of Applied Physics</i> , 2011 , 50, 070101	1.4	99
347	The Effect of Methyl Functionalization on Microporous Metal-Organic Frameworks' Capacity and Binding Energy for Carbon Dioxide Adsorption. <i>Advanced Functional Materials</i> , 2011 , 21, 4754-4762	15.6	98
346	Characteristics of high-k Al2O3 dielectric using ozone-based atomic layer deposition for dual-gated graphene devices. <i>Applied Physics Letters</i> , 2010 , 97, 043107	3.4	98
345	Effective sensing of RDX via instant and selective detection of ketone vapors. <i>Chemical Science</i> , 2014 , 5, 4873-4877	9.4	96
344	Selective, Sensitive, and Reversible Detection of Vapor-Phase High Explosives via Two-Dimensional Mapping: A New Strategy for MOF-Based Sensors. <i>Crystal Growth and Design</i> , 2013 , 13, 4204-4207	3.5	96
343	Water cluster confinement and methane adsorption in the hydrophobic cavities of a fluorinated metal-organic framework. <i>Journal of the American Chemical Society</i> , 2013 , 135, 12615-26	16.4	94
342	Progression of Solid Electrolyte Interphase Formation on Hydrogenated Amorphous Silicon Anodes for Lithium-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 9072-9077	3.8	93
341	Vibrational energy transfer on hydrogen-terminated vicinal Si(111) surfaces: Interadsorbate energy flow. <i>Journal of Chemical Physics</i> , 1992 , 96, 6203-6212	3.9	93
340	Photoemission and band-structure results for NiSi2. <i>Physical Review B</i> , 1982 , 25, 7598-7602	3.3	93
339	Nature of Graphene Edges: A Review. Japanese Journal of Applied Physics, 2011, 50, 070101	1.4	92
338	Role of interdimer interactions in NH3 dissociation on si(100)-(2x1). <i>Physical Review Letters</i> , 2001 , 86, 1046-9	7.4	91
337	Infrared Absorption in a-Si: H: First Observation of Gaseous Molecular H2 and Si-H Overtone. <i>Physical Review Letters</i> , 1984 , 53, 210-213	7.4	90
336	Diffusion of small molecules in metal organic framework materials. <i>Physical Review Letters</i> , 2013 , 110, 026102	7.4	89

335	Copper-metal deposition on self assembled monolayer for making top contacts in molecular electronic devices. <i>Journal of the American Chemical Society</i> , 2009 , 131, 18159-67	16.4	89
334	Mechanism of carbon dioxide adsorption in a highly selective coordination network supported by direct structural evidence. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 1692-5	16.4	87
333	Realistic metal-graphene contact structures. ACS Nano, 2014, 8, 642-9	16.7	86
332	Understanding the preferential adsorption of CO2 over N2 in a flexible metal-organic framework. Journal of the American Chemical Society, 2011 , 133, 12849-57	16.4	86
331	Stability of HF-etched Si(100) surfaces in oxygen ambient. <i>Applied Physics Letters</i> , 2001 , 79, 4051-4053	3.4	86
330	Mechanism of silicon exfoliation induced by hydrogen/helium co-implantation. <i>Applied Physics Letters</i> , 1998 , 73, 3721-3723	3.4	86
329	Coupling of H vibration to substrate electronic states in Mo(100)-p(1 x 1)H and W(100)-p(1 x 1)H: Example of strong breakdown of adiabaticity. <i>Physical Review B</i> , 1988 , 38, 3112-3132	3.3	86
328	Rational design of common transition metal-nitrogen-carbon catalysts for oxygen reduction reaction in fuel cells. <i>Nano Energy</i> , 2016 , 30, 443-449	17.1	84
327	Interaction of molecular hydrogen with microporous metal organic framework materials at room temperature. <i>Journal of the American Chemical Society</i> , 2010 , 132, 1654-64	16.4	83
326	Infrared characterization of biotinylated silicon oxide surfaces, surface stability, and specific attachment of streptavidin. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 8776-83	3.4	83
325	In situ infrared spectroscopy of hafnium oxide growth on hydrogen-terminated silicon surfaces by atomic layer deposition. <i>Applied Physics Letters</i> , 2005 , 87, 133103	3.4	83
324	Influence of silicon oxide on the morphology of HF-etched Si(111) surfaces: Thermal versus chemical oxide. <i>Applied Physics Letters</i> , 1991 , 59, 2968-2970	3.4	83
323	Suppression of subcutaneous oxidation during the deposition of amorphous lanthanum aluminate on silicon. <i>Applied Physics Letters</i> , 2004 , 84, 4629-4631	3.4	81
322	Transmission infrared spectroscopy of methyl- and ethyl-terminated silicon(111) surfaces. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 7349-56	3.4	78
321	Interfacial chemistry in Al/CuO reactive nanomaterial and its role in exothermic reaction. <i>ACS Applied Materials & District Section (No. 1)</i> , 5, 605-13	9.5	76
320	A vibrational study of ethanol adsorption on Si(100). <i>Journal of Chemical Physics</i> , 1997 , 106, 9889-9898	3.9	75
319	Laser-assisted deposition of iron on Si(111)-(7½): The mechanism and energetics of Fe(CO)5 decomposition. <i>Journal of Chemical Physics</i> , 1987 , 87, 5028-5037	3.9	75
318	Chemomechanical polishing of silicon: Surface termination and mechanism of removal. <i>Applied Physics Letters</i> , 1994 , 64, 3115-3117	3.4	74

317	Silanone (Si=O) on Si(100): intermediate for initial silicon oxidation. <i>Physical Review B</i> , 2002 , 66,	3.3	73
316	Measuring the structure of etched silicon surfaces with Raman spectroscopy. <i>Journal of Chemical Physics</i> , 1994 , 101, 8055-8072	3.9	73
315	High-Resolution Infrared Study of Hydrogen (1🛭) on Tungsten (100). <i>Physical Review Letters</i> , 1980 , 44, 944-947	7.4	73
314	Interaction of Acid Gases SO2 and NO2 with Coordinatively Unsaturated Metal Organic Frameworks: M-MOF-74 (M = Zn, Mg, Ni, Co). <i>Chemistry of Materials</i> , 2017 , 29, 4227-4235	9.6	7 ²
313	Surface and interface processes during atomic layer deposition of copper on silicon oxide. <i>Langmuir</i> , 2010 , 26, 3911-7	4	71
312	In Situ Infrared Characterization during Atomic Layer Deposition of Lanthanum Oxide. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 654-660	3.8	71
311	Sill bending modes as a probe of local chemical structure: Thermal and chemical routes to decomposition of H2O on Si(100)-(21). <i>Journal of Chemical Physics</i> , 2000 , 113, 2440-2446	3.9	71
310	Silicon Surface Modification and Characterization for Emergent Photovoltaic Applications Based on Energy Transfer. <i>Chemical Reviews</i> , 2015 , 115, 12764-96	68.1	70
309	Rapid Selective Etching of PMMA Residues from Transferred Graphene by Carbon Dioxide. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 23000-23008	3.8	69
308	Chlorination of hydrogen-terminated silicon (111) surfaces. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2005 , 23, 1100-1106	2.9	69
307	Infrared study of the chemisorption of hydrogen and water on vicinal Si(100) 2¶ surfaces. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1985 , 3, 1448-1451	2.9	69
306	Precursor design and reaction mechanisms for the atomic layer deposition of metal films. <i>Coordination Chemistry Reviews</i> , 2013 , 257, 3271-3281	23.2	68
305	Materials Characterization of Alternative Gate Dielectrics. MRS Bulletin, 2002, 27, 206-211	3.2	68
304	Wet chemical surface functionalization of oxide-free silicon. <i>Progress in Surface Science</i> , 2012 , 87, 272-2	2 90 .6	67
303	Physics and chemistry of silicon wafer bonding investigated by infrared absorption spectroscopy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1996, 14, 3095		67
302	Partially oxidized graphene as a precursor to graphene. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11217		66
301	Controlled Deposition of Gold Nanoparticles on Well-Defined Organic Monolayer Grafted on Silicon Surfaces. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 14180-14186	3.8	66
300	Summary Abstract: Surface state optical absorption on the clean Si(100)2ll surface. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1983 , 1, 1241-1242	2.9	66

(2002-2012)

29	99	Oriented graphene nanoribbon yarn and sheet from aligned multi-walled carbon nanotube sheets. <i>Advanced Materials</i> , 2012 , 24, 5695-701	24	64	
29	98	Hafnium oxide gate dielectrics grown from an alkoxide precursor: structure and defects. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2004 , 109, 6-10	3.1	64	
29	97	Buckling Reconstruction on Laser-Annealed Si(111) Surfaces. <i>Physical Review Letters</i> , 1981 , 46, 600-603	7.4	64	
29	96	Atomic scale oxidation of a complex system: O2/alpha-SiC(0001)-(3 x 3). <i>Physical Review Letters</i> , 2001 , 86, 4342-5	7.4	62	
29	95	Infrared spectroscopic investigation of the reaction of hydrogen-terminated, (111)-oriented, silicon surfaces with liquid methanol. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 20426-34	3.4	61	
29	94	Low-frequency dynamics of CO/Cu breakdown of Born ppenheimer approximation. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1994 , 12, 2229-2234	2.9	61	
29	93	Rapid desolvation-triggered domino lattice rearrangement in a metal-organic framework. <i>Nature Chemistry</i> , 2020 , 12, 90-97	17.6	60	
29	92	Low-Temperature Synthesis of a TiO2/Si Heterojunction. <i>Journal of the American Chemical Society</i> , 2015 , 137, 14842-5	16.4	59	
29	91	Activation of surface hydroxyl groups by modification of H-terminated Si(111) surfaces. <i>Journal of the American Chemical Society</i> , 2012 , 134, 8869-74	16.4	59	
29	90	Molecular hydrogen "pairing" interaction in a metal organic framework system with unsaturated metal centers (MOF-74). <i>Journal of the American Chemical Society</i> , 2010 , 132, 14834-48	16.4	59	
28	89	Environment-controlled tethering by aggregation and growth of phosphonic acid monolayers on silicon oxide. <i>Langmuir</i> , 2012 , 28, 8046-51	4	58	
28	88	Infrared spectroscopic analysis of an ordered Si/SiO2 interface. <i>Applied Physics Letters</i> , 2004 , 84, 493-49	953.4	58	
28	87	Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films. <i>Nanoscale</i> , 2016 , 8, 1627-34	7.7	56	
28	86	Vibrational energy transfer among adsorbate modes: Picosecond dynamics on stepped H/Si(111). Journal of Chemical Physics, 1993 , 99, 6114-6125	3.9	56	
28	85	Enhancing the Reactivity of Al/CuO Nanolaminates by Cu Incorporation at the Interfaces. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 11713-8	9.5	55	
28	84	Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes. <i>ACS Nano</i> , 2012 , 6, 5574-82	16.7	55	
28	83	When metal organic frameworks turn into linear magnets. <i>Physical Review B</i> , 2013 , 87,	3.3	55	
28	82	The surface science of semiconductor processing: gate oxides in the ever-shrinking transistor. Surface Science, 2002, 500, 859-878	1.8	55	

281	Monolayer Doping via Phosphonic Acid Grafting on Silicon: Microscopic Insight from Infrared Spectroscopy and Density Functional Theory Calculations. <i>Advanced Functional Materials</i> , 2013 , 23, 347	1-3477	54
280	Nitrogen interaction with hydrogen-terminated silicon surfaces at the atomic scale. <i>Nature Materials</i> , 2009 , 8, 825-30	27	54
279	Mechanistic studies of silicon oxidation. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 1999 , 17, 1795		54
278	Substrate Selectivity of (tBu-Allyl)Co(CO)3 during Thermal Atomic Layer Deposition of Cobalt. <i>Chemistry of Materials</i> , 2012 , 24, 1025-1030	9.6	53
277	Controlled silicon surface functionalization by alkene hydrosilylation. <i>Journal of the American Chemical Society</i> , 2005 , 127, 12798-9	16.4	53
276	Low temperature formation of Si(111)7 surfaces from chemically prepared H/Si(111)-(11) surfaces. <i>Applied Physics Letters</i> , 1994 , 64, 3308-3310	3.4	53
275	Atomic layer deposition of aluminum oxide on carboxylic acid-terminated self-assembled monolayers. <i>Langmuir</i> , 2009 , 25, 1911-4	4	52
274	Detection of a Formate Surface Intermediate in the Atomic Layer Deposition of High-Dielectrics Using Ozone. <i>Chemistry of Materials</i> , 2008 , 20, 3248-3250	9.6	52
273	Characterization and production metrology of thin transistor gate oxide films. <i>Materials Science in Semiconductor Processing</i> , 1999 , 2, 103-147	4.3	51
272	Graphitization of Graphene Oxide with Ethanol during Thermal Reduction. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 9969-9979	3.8	50
271	Interaction of H, O2, and H2O with 3C-SiC surfaces. <i>Journal of Chemical Physics</i> , 2003 , 119, 6201-6209	3.9	50
270	Controlling the Atomic Layer Deposition of Titanium Dioxide on Silicon: Dependence on Surface Termination. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 20250-20259	3.8	49
269	Gas phase chlorination of hydrogen-passivated silicon surfaces. <i>Applied Physics Letters</i> , 2004 , 85, 2583-2	25,845	49
268	Infrared-absorption spectroscopy of Si(100) and Si(111) surfaces after chemomechanical polishing. <i>Journal of Applied Physics</i> , 1995 , 78, 1650-1658	2.5	49
267	Molecular hydrogen in a-Si: H. Reviews of Modern Physics, 1987, 59, 835-844	40.5	49
266	Investigation of the Chemical Purity of Silicon Surfaces Reacted with Liquid Methanol. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 11907-11919	3.8	48
265	Heterogeneous nucleation of oxygen on silicon: Hydroxyl-mediated interdimer coupling on Si(100)([20]). <i>Physical Review B</i> , 1998 , 58, R13434-R13437	3.3	48
264	Electron energy loss spectroscopy of H-terminated Si(111) and Si(100) prepared by chemical etching. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1992 , 10, 2160-2165	2.9	48

263	Trapping gases in metal-organic frameworks with a selective surface molecular barrier layer. <i>Nature Communications</i> , 2016 , 7, 13871	17.4	48	
262	Oxidation of H-covered flat and vicinal Si(111)-1¶ surfaces. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2001 , 19, 1725-1729	2.9	47	
261	Simultaneous Trapping of C2H2 and C2H6 from a Ternary Mixture of C2H2/C2H4/C2H6 in a Robust Metal Drganic Framework for the Purification of C2H4. <i>Angewandte Chemie</i> , 2018 , 130, 16299-16303	3.6	47	
2 60	Control and stability of self-assembled monolayers under biosensing conditions. <i>Journal of Materials Chemistry</i> , 2011 , 21, 4384		46	
259	Theoretical and experimental analysis of H2 binding in a prototypical metal-organic framework material. <i>Physical Review B</i> , 2009 , 79,	3.3	46	
258	Inverse-photoemission spectroscopy of the unreconstructed, ideally H-terminated Si(111) surface. <i>Physical Review B</i> , 1992 , 45, 1187-1192	3.3	45	
257	Selective Extraction of Thorium from Rare Earth Elements Using Wrinkled Mesoporous Carbon. Journal of the American Chemical Society, 2018 , 140, 14735-14739	16.4	45	
256	Characterization of Ultra-Thin Hafnium Oxide Films Grown on Silicon by Atomic Layer Deposition Using Tetrakis(ethylmethyl-amino) Hafnium and Water Precursors. <i>Chemistry of Materials</i> , 2007 , 19, 31	2 <i>7</i> -313	8 ⁴⁴	
255	MOLECULES AT SURFACES AND INTERFACES STUDIED USING VIBRATIONAL SPECTROSCOPIES AND RELATED TECHNIQUES. <i>Surface Review and Letters</i> , 1999 , 06, 225-255	1.1	44	
254	H-induced structural phase transitions on W(100) by surface infrared spectroscopy. <i>Physical Review B</i> , 1986 , 33, 7906-7916	3.3	44	
253	Modified phonon confinement model for Raman spectroscopy of nanostructured materials. <i>Physical Review B</i> , 2010 , 82,	3.3	43	
252	Characterization of silicon surfaces and interfaces by optical vibrational spectroscopy. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1995 , 13, 1719-1727	2.9	43	
251	Raman studies of steric hindrance and surface relaxation of stepped H-terminated silicon surfaces. <i>Physical Review Letters</i> , 1993 , 71, 2280-2283	7.4	43	
250	Reconstructive phase transitions and effective adsorbate-adsorbate interactions: H/Mo(100) and H/W(100). <i>Physical Review Letters</i> , 1987 , 58, 1877-1880	7.4	43	
249	Structure Matters: Correlating temperature dependent electrical transport through alkyl monolayers with vibrational and photoelectron spectroscopies. <i>Chemical Science</i> , 2012 , 3, 851-862	9.4	42	
248	Analyzing the frequency shift of physiadsorbed CO2 in metal organic framework materials. <i>Physical Review B</i> , 2012 , 85,	3.3	42	
247	In-Situ FTIR Studies of Reactions at the Silicon/Liquid Interface: Wet Chemical Etching of Ultrathin SiO2 on Si(100) [] Journal of Physical Chemistry B, 2001 , 105, 3903-3907	3.4	41	
246	Temperature Dependence of the Far-Infrared Absorption Spectrum in Amorphous Dielectrics. <i>Physical Review Letters</i> , 1975 , 35, 1352-1355	7.4	41	

245	Impact of Ionic Liquids on the Exfoliation of Graphite Oxide. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 7867-7873	3.8	40
244	Atomic layer deposition of Al2O3 on H-passivated Si: Al(CH3)2OH surface reactions with H/Si(100)📶. <i>Physical Review B</i> , 2003 , 68,	3.3	40
243	Real-Time, In Situ Monitoring of Room-Temperature Silicon Surface Cleaning Using Hydrogen and Ammonia Plasmas. <i>Journal of the Electrochemical Society</i> , 1993 , 140, 3316-3321	3.9	40
242	Discrete nature of inhomogeneity on stepped H/Si(111) surfaces: Spectroscopic identification of individual terrace sizes. <i>Physical Review B</i> , 1993 , 47, 6839-6842	3.3	40
241	Broadband transient absorption study of photoexcitations in lead halide perovskites: Towards a multiband picture. <i>Physical Review B</i> , 2016 , 93,	3.3	39
240	Giant PbSe/CdSe/CdSe Quantum Dots: Crystal-Structure-Defined Ultrastable Near-Infrared Photoluminescence from Single Nanocrystals. <i>Journal of the American Chemical Society</i> , 2017 , 139, 110	87-140	8 8 9
239	Testing the effect of surface coatings on alkali atom polarization lifetimes. <i>Journal of Applied Physics</i> , 2008 , 104, 103116	2.5	39
238	Wet chemical cleaning of InP surfaces investigated by in situ and ex situ infrared spectroscopy. Journal of Applied Physics, 2003, 94, 2707-2715	2.5	39
237	Controlled, low-coverage metal oxide activation of silicon for organic functionalization: unraveling the phosphonate bond. <i>Langmuir</i> , 2012 , 28, 17494-505	4	38
236	Enhanced Binding Affinity, Remarkable Selectivity, and High Capacity of CO2 by Dual Functionalization of a rht-Type Metal Drganic Framework. <i>Angewandte Chemie</i> , 2012 , 124, 1441-1444	3.6	38
235	Spectroscopic evidence for the influence of the benzene sites on tightly bound H2 in metal-organic frameworks with unsaturated metal centers: MOF-74-cobalt. <i>Journal of the American Chemical Society</i> , 2011 , 133, 4782-4	16.4	38
234	Ligand functionalization and its effect on CO2 adsorption in microporous metal-organic frameworks. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 778-85	4.5	37
233	Turning aluminium into a noble-metal-like catalyst for low-temperature activation of molecular hydrogen. <i>Nature Materials</i> , 2011 , 10, 884-9	27	37
232	Atomic Layer Deposition of Ru/RuO2 Thin Films Studied by In situ Infrared Spectroscopy. <i>Chemistry of Materials</i> , 2010 , 22, 4867-4878	9.6	37
231	Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates. <i>Applied Physics Letters</i> , 2011 , 98, 161904	3.4	37
230	Investigation of the Reactions during Alkylation of Chlorine-Terminated Silicon (111) Surfaces. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 13053-13061	3.8	37
229	Coherence effects in long-wavelength infrared synchrotron radiation emission. <i>Physical Review Letters</i> , 1989 , 62, 261-263	7.4	37
228	Solid Hydrogen in Amorphous Silicon: Phase Transition. <i>Physical Review Letters</i> , 1984 , 53, 1771-1774	7.4	37

227	Infrared synchrotron radiation measurements at Brookhaven. <i>Review of Scientific Instruments</i> , 1989 , 60, 2176-2178	1.7	36
226	Elementary surface chemistry during CuO/Al nanolaminate-thermite synthesis: copper and oxygen deposition on aluminum (111) surfaces. <i>ACS Applied Materials & District Materials</i> (111) surfaces. <i>ACS Applied Materials</i> (111) surfaces. <i>ACS Applied Materials</i> (111) surfaces. <i>ACS Applied Materials</i> (111) surfaces.	9.5	35
225	Infrared characterization of hafnium oxide grown by atomic layer deposition using ozone as the oxygen precursor. <i>Applied Physics Letters</i> , 2007 , 90, 022906	3.4	35
224	Role of hydrogen in hydrogen-induced layer exfoliation of germanium. <i>Physical Review B</i> , 2007 , 75,	3.3	35
223	Superior catalytic performance of Mn-Mullite over Mn-Perovskite for NO oxidation. <i>Catalysis Today</i> , 2018 , 310, 195-201	5.3	34
222	Enhanced cohesion of photo-oxygenated fullerene films: A new opportunity for lithography. <i>Applied Physics A: Solids and Surfaces</i> , 1993 , 57, 299-303		34
221	Quenching of photoluminescence in a Zn-MOF sensor by nitroaromatic molecules. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 2625-2632	7.1	33
220	Visible to near-infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: further insights for hybrid photovoltaics. <i>ACS Nano</i> , 2013 , 7, 3236-45	16.7	32
219	Anharmonic adlayer vibrations on the Si(111):H surface. <i>Physical Review B</i> , 1999 , 59, 10996-11013	3.3	32
218	Stable and Active Oxidation Catalysis by Cooperative Lattice Oxygen Redox on SmMnO Mullite Surface. <i>Journal of the American Chemical Society</i> , 2019 , 141, 10722-10728	16.4	31
217	Structural, elastic, thermal, and electronic responses of small-molecule-loaded metal®rganic framework materials. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 986-995	13	31
216	Selectivity of metal oxide atomic layer deposition on hydrogen terminated and oxidized Si(001)-(211) surface. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2014 , 32, 03D112	1.3	31
215	In Situ Infrared Spectroscopic Study of Atomic Layer-Deposited TiO2 Thin Films by Nonaqueous Routes. <i>Chemistry of Materials</i> , 2013 , 25, 1706-1712	9.6	31
214	Surface electromagnetic wave launching at the edge of a metal film. <i>Applied Physics Letters</i> , 1978 , 32, 90-92	3.4	31
213	Difficulty for oxygen to incorporate into the silicon network during initial O2 oxidation of Si(100)-(2x1). <i>Journal of Chemical Physics</i> , 2007 , 126, 114707	3.9	30
212	Modulation of Water Vapor Sorption by a Fourth-Generation Metal-Organic Material with a Rigid Framework and Self-Switching Pores. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12545-12552	16.4	30
211	Substrate selectivity in the low temperature atomic layer deposition of cobalt metal films from bis(1,4-di-tert-butyl-1,3-diazadienyl)cobalt and formic acid. <i>Journal of Chemical Physics</i> , 2017 , 146, 05281	3 9	29
210	Indium diffusion through high-k dielectrics in high-k/InP stacks. <i>Applied Physics Letters</i> , 2013 , 103, 06160	3.4	29

209	Nature of vicinal laser-annealed Si(111) surfaces. <i>Physical Review B</i> , 1981 , 24, 3303-3309	3.3	29
208	Atomic Layer Deposition of Silicon Dioxide Using Aminosilanes Di-sec-butylaminosilane and Bis(tert-butylamino)silane with Ozone. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 10927-10935	3.8	29
207	Structure and Chemical Characterization at the Atomic Level of Reactions in Al/CuO Multilayers. <i>ACS Applied Energy Materials</i> , 2018 , 1, 1762-1770	6.1	28
206	Spectroscopic characterization of van der Waals interactions in a metal organic framework with unsaturated metal centers: MOF-74-Mg. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 424203	1.8	28
205	Silicon wafer bonding studied by infrared absorption spectroscopy. <i>Applied Physics Letters</i> , 1994 , 65, 2548-2550	3.4	28
204	Selective detection of olefins using a luminescent silver-functionalized metal organic framework, RPM3. <i>Microporous and Mesoporous Materials</i> , 2013 , 174, 100-107	5.3	27
203	Functionalization of oxide-free silicon surfaces. <i>Journal of Vacuum Science and Technology A:</i> Vacuum, Surfaces and Films, 2013 , 31, 050826	2.9	26
202	Infrared study of hydrogen chemisorbed on W(100) by surface-electromagnetic-wave spectroscopy. <i>Physical Review B</i> , 1981 , 24, 2921-2934	3.3	26
201	Spectroscopic studies of the mechanism for hydrogen-induced exfoliation of InP. <i>Physical Review B</i> , 2005 , 72,	3.3	25
200	CO diffusion on Pt(111) by time-resolved surface infrared spectroscopy. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1989 , 7, 2227-2234	2.9	25
199	Novel binder-free electrode materials for supercapacitors utilizing high surface area carbon nanofibers derived from immiscible polymer blends of PBI/6FDA-DAM:DABA. <i>RSC Advances</i> , 2017 , 7, 20947-20959	3.7	24
198	Surface etching, chemical modification and characterization of silicon nitride and silicon oxideselective functionalization of Si3N4 and SiO2. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 094	018	24
197	One-step selective chemistry for silicon-on-insulator sensor geometries. <i>Langmuir</i> , 2011 , 27, 7337-40	4	24
196	In-situ FTIR Study of Atomic Layer Deposition (ALD) of Copper Metal Films. <i>ECS Transactions</i> , 2007 , 11, 91-101	1	24
195	Water-saturated Si(100)-(21): Kinetic Monte Carlo simulations of thermal oxygen incorporation. <i>Journal of Applied Physics</i> , 2001 , 90, 6000-6005	2.5	24
194	Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells. <i>Applied Physics Letters</i> , 2012 , 100, 0219	9ð2 ¹	23
193	Ammonia pretreatment for high-Idielectric growth on silicon. <i>Applied Physics Letters</i> , 2004 , 85, 3830-383	33.4	23
192	Real-time monitoring of surface chemistry during plasma processing. <i>Pure and Applied Chemistry</i> , 1994 , 66, 1381-1388	2.1	23

191	Looking up the down staircase: Surface Raman spectroscopy as a probe of adsorbate orientation. Journal of Electron Spectroscopy and Related Phenomena, 1993 , 64-65, 183-191	1.7	23	
190	Sample manipulator for operation between 20 and 2000 K in ultrahigh vacuum. <i>Review of Scientific Instruments</i> , 1983 , 54, 1031-1033	1.7	23	
189	Laser quenched and impurity induced metastable Si(111)1 surfaces. <i>Journal of Vacuum Science and Technology</i> , 1982 , 20, 763-769		23	
188	pH-dependent structure and energetics of H2O/MgO(100). Surface Science, 2012, 606, 902-907	1.8	22	
187	First-principles approach to rotational-vibrational frequencies and infrared intensity for H2 adsorbed in nanoporous materials. <i>Physical Review B</i> , 2011 , 83,	3.3	22	
186	Nature of Hydrophilic Aluminum Fluoride and Oxyaluminum Fluoride Surfaces Resulting from XeF2 Treatment of Al and Al2O3. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 21351-21357	3.8	22	
185	Ethylenediamine Grafting on Oxide-Free H-, 1/3 ML F-, and Cl-Terminated Si(111) Surfaces. <i>Chemistry of Materials</i> , 2015 , 27, 6268-6281	9.6	21	
184	Study of van der Waals bonding and interactions in metal organic framework materials. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 133002	1.8	21	
183	Diffusion of In0.53Ga0.47As elements through hafnium oxide during post deposition annealing. <i>Applied Physics Letters</i> , 2014 , 104, 011601	3.4	21	
182	Nanoscale actuation of electrokinetic flows on thermoreversible surfaces. <i>Electrophoresis</i> , 2008 , 29, 1	245.62	21	
181	An infrared study of H8Si8O12 cluster adsorption on Si(100) surfaces. <i>Journal of Chemical Physics</i> , 1998 , 108, 8680-8688	3.9	21	
180	Etching of Silicon (111) and (100) Surfaces in HF Solutions: H-Termination, Atomic Structure and Overall Morphology. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 259, 349		21	
179	Oxidation of GaAs(110) with NO2: Infrared spectroscopy. <i>Physical Review B</i> , 1990 , 42, 5240-5248	3.3	21	
178	Role of Hydrogen Bonding on Transport of Coadsorbed Gases in Metal-Organic Frameworks Materials. <i>Journal of the American Chemical Society</i> , 2018 , 140, 856-859	16.4	20	
177	Silicon Oxidation and Ultra-Thin Oxide Formation on Silicon Studied by Infrared Absorption Spectroscopy. <i>Physica Status Solidi A</i> , 1999 , 175, 77-88		20	
176	Real-time, in situ monitoring of surface reactions during plasma passivation of GaAs. <i>Applied Physics Letters</i> , 1993 , 62, 3156-3158	3.4	20	
175	A Review on Reducing Graphene Oxide for Band Gap Engineering. <i>Journal of Materials Science Research</i> , 2012 , 2,	1	19	

173	Suppression of substrate oxidation during ozone based atomic layer deposition of Al2O3: Effect of ozone flow rate. <i>Applied Physics Letters</i> , 2010 , 97, 162903	3.4	18
172	Fundamental steps towards interface amorphization during silicon oxidation: Density functional theory calculations. <i>Physical Review B</i> , 2009 , 79,	3.3	18
171	Formation and bonding of alane clusters on Al(111) surfaces studied by infrared absorption spectroscopy and theoretical modeling. <i>Journal of the American Chemical Society</i> , 2008 , 130, 10576-87	16.4	18
170	Real time in situ monitoring of surfaces during glow discharge processing: NH3 and H2 plasma passivation of GaAs. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 1995 , 13, 258		18
169	Interfacial graphene growth in the Ni/SiO2 system using pulsed laser deposition. <i>Applied Physics Letters</i> , 2013 , 103, 134102	3.4	17
168	Comparison of Methods to Bias Fully Depleted SOI-Based MOSFET Nanoribbon pH Sensors. <i>IEEE Transactions on Electron Devices</i> , 2011 , 58, 1752-1760	2.9	17
167	Water reaction with chlorine-terminated silicon (111) and (100) surfaces. <i>Applied Physics Letters</i> , 2005 , 87, 173118	3.4	17
166	Transient vibrational mode renormalization in dipole-coupled adsorbates at surfaces. <i>Journal of Chemical Physics</i> , 1994 , 100, 6896-6906	3.9	17
165	Si(111): Ni surface studies by AES, UPS, LEED, and ion scattering. <i>Journal of Vacuum Science and Technology</i> , 1981 , 18, 880-882		17
164	DNA Grafting and Arrangement on Oxide Surfaces for Self-Assembly of Al and CuO Nanoparticles. <i>Langmuir</i> , 2017 , 33, 12193-12203	4	16
163	Role of Alumina Coatings for Selective and Controlled Bonding of DNA on Technologically Relevant Oxide Surfaces. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 23527-23543	3.8	16
162	Mechanism of Arsenic Monolayer Doping of Oxide-Free Si(111). Chemistry of Materials, 2016, 28, 1975-	193769	16
161	Toward Atomic-Scale Patterned Atomic Layer Deposition: Reactions of Al2O3 Precursors on a Si(001) Surface with Mixed Functionalizations. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 2628-2641	3.8	16
160	Film Structure of Epitaxial Graphene Oxide on SiC: Insight on the Relationship Between Interlayer Spacing, Water Content, and Intralayer Structure. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1300106	4.6	16
159	Lowering the density of electronic defects on organic-functionalized Si(100) surfaces. <i>Applied Physics Letters</i> , 2014 , 104, 241601	3.4	16
158	Reconstructed Ribbon Edges in Thermally Reduced Graphene Nanoribbons. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 24006-24015	3.8	16
157	XeF2-induced removal of SiO2 near Si surfaces at 300 K: An unexpected proximity effect <i>Journal of Applied Physics</i> , 2010 , 108, 114914	2.5	16
156	Thermal stability of amorphous LaScO3 films on silicon. <i>Applied Physics Letters</i> , 2006 , 89, 062902	3.4	16

155	Hydrogen Barrier Layer Against Silicon Oxidation during Atomic Layer Deposition of Al[sub 2]O[sub 3] and HfO[sub 2]. <i>Journal of the Electrochemical Society</i> , 2007 , 154, G44	3.9	16	
154	The microscopic origin of optical phonon evolution during water oxidation of Si(100). <i>Journal of Chemical Physics</i> , 2003 , 119, 2307-2313	3.9	16	
153	Thermal evolution of impurities in wet chemical silicon oxides. <i>Applied Physics Letters</i> , 1999 , 74, 1257-1	2594	16	
152	Self-Organized Al2Cu Nanocrystals at the Interface of Aluminum-Based Reactive Nanolaminates to Lower Reaction Onset Temperature. <i>ACS Applied Materials & District Materials & Di</i>	9.5	16	
151	Structure-Driven Photoluminescence Enhancement in a Zn-Based Metal®rganic Framework. <i>Chemistry of Materials</i> , 2019 , 31, 7933-7940	9.6	15	
150	Toward Selective Ultra-High-Vacuum Atomic Layer Deposition of Metal Oxides on Si(100). <i>Journal of Physical Chemistry C</i> , 2016 , 120, 24213-24223	3.8	15	
149	Chemical Modification Mechanisms in Hybrid Hafnium Oxo-methacrylate Nanocluster Photoresists for Extreme Ultraviolet Patterning. <i>Chemistry of Materials</i> , 2018 , 30, 6192-6206	9.6	15	
148	Graphitic carbon nitride nano-emitters on silicon: a photoelectrochemical heterojunction composed of earth-abundant materials for enhanced evolution of hydrogen. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 12697-12702	13	15	
147	Low-index, smooth Al_2O_3 films by aqueous solution process. <i>Optical Materials Express</i> , 2017 , 7, 273	2.6	15	
146	First-Principles Study of the Etching Reactions of HF and H2O with Si/SiO2 Surfaces. <i>Materials Research Society Symposia Proceedings</i> , 1993 , 315, 437		15	
145	Infrared absorption measurement of the overtone of the wagging mode of hydrogen on W(100). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1986, 4, 1324-1328	2.9	15	
144	Selective Atomic Layer Deposition Mechanism for Titanium Dioxide Films with (EtCp)Ti(NMe2)3: Ozone versus Water. <i>Chemistry of Materials</i> , 2018 , 30, 970-981	9.6	14	
143	Controlled Growth and Grafting of High-Density Au Nanoparticles on Zinc Oxide Thin Films by Photo-Deposition. <i>Langmuir</i> , 2018 , 34, 1932-1940	4	14	
142	Static and dynamic electronic characterization of organic monolayers grafted on a silicon surface. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 3675-84	3.6	14	
141	Pattern transfer of hydrogen depassivation lithography patterns into silicon with atomically traceable placement and size control. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2014 , 32, 041804	1.3	14	
140	Effect of mobile ions on ultrathin silicon-on-insulator-based sensors. <i>Applied Physics Letters</i> , 2010 , 97, 034103	3.4	14	
139	The Structure and Vibrational Spectrum of the Si(111)卧/Cl Surface. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 21713-21720	3.8	14	
138	Summary Abstract: Reconstruction, adsorbate bonding, and desorption kinetics of H/Mo(100). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 791-792	2.9	14	

137	Summary Abstract: Hydrogen phonon spectra on Pt(111) at T=100 and 160 K. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1988 , 6, 816-819	2.9	14
136	Order of magnitude enhancement of monolayer MoS photoluminescence due to near-field energy influx from nanocrystal films. <i>Scientific Reports</i> , 2017 , 7, 41967	4.9	13
135	Hybrid light sensor based on ultrathin Si nanomembranes sensitized with CdSe/ZnS colloidal nanocrystal quantum dots. <i>Nanoscale</i> , 2015 , 7, 8524-30	7.7	13
134	Role of Initial Precursor Chemisorption on Incubation Delay for Molybdenum Oxide Atomic Layer Deposition. <i>Chemistry of Materials</i> , 2016 , 28, 8591-8597	9.6	13
133	Efficient Directed Energy Transfer through Size-Gradient Nanocrystal Layers into Silicon Substrates. <i>Advanced Functional Materials</i> , 2014 , 24, 5002-5010	15.6	13
132	Atomic-Layer-Deposited Al2O3 as Gate Dielectrics for Graphene-Based Devices. <i>ECS Transactions</i> , 2009 , 19, 225-230	1	13
131	Phase transitions, surface structures, and adsorbate bonding in the H/Mo(100) chemisorption system. <i>Journal of Chemical Physics</i> , 1991 , 94, 6274-6295	3.9	13
130	Stoichiometry and structural disorder effects on the electronic structure of Ni and Pd silicides. <i>Physical Review B</i> , 1982 , 26, 2748-2758	3.3	13
129	Vibrational Properties at Semiconductor Surfaces and Interfaces. <i>Springer Proceedings in Physics</i> , 1987 , 301-327	0.2	13
128	Performance Enhancement via Incorporation of ZnO Nanolayers in Energetic Al/CuO Multilayers. <i>Langmuir</i> , 2017 , 33, 11086-11093	4	12
127	Atomic Layer Deposition of Cobalt Silicide Thin Films Studied by in Situ Infrared Spectroscopy. <i>Chemistry of Materials</i> , 2015 , 27, 4943-4949	9.6	12
126	Silicon interfacial passivation layer chemistry for high-k/InP interfaces. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2014 , 6, 7340-5	9.5	12
125	Gold nanoparticles on oxide-free silicon-molecule interface for single electron transport. <i>Langmuir</i> , 2013 , 29, 5066-73	4	12
124	Effect of Titanium Doping of Al(111) Surfaces on Alane Formation, Mobility, and Desorption. Journal of Physical Chemistry C, 2011 , 115, 16701-16710	3.8	12
123	Trucks et al. reply. <i>Physical Review Letters</i> , 1991 , 66, 1648	7.4	12
122	Vapor-Phase Cleaning and Corrosion Inhibition of Copper Films by Ethanol and Heterocyclic Amines. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 38610-38620	9.5	12
121	Reactivity of Atomic Layer Deposition Precursors with OH/H2O-Containing Metal Organic Framework Materials. <i>Chemistry of Materials</i> , 2019 , 31, 2286-2295	9.6	11
120	Investigation of LiAlH4-THF formation by direct hydrogenation of catalyzed Al and LiH. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 6569-76	3.6	11

119	Effect of Back-Gate Biasing on Floating Electrolytes in Silicon-on-Insulator-Based Nanoribbon Sensors. <i>IEEE Electron Device Letters</i> , 2012 , 33, 447-449	4.4	11
118	Effects of the Local Environment on Si $\mathbb H$ Stretching Frequencies for the Mixed Coverage X/H:Si(111) Surface (X = F, Cl, Br, and I). <i>Journal of Physical Chemistry C</i> , 2010 , 114, 17644-17650	3.8	11
117	Probing the intrinsic electrical properties of thin organic layers/semiconductor interfaces using an atomic-layer-deposited Al2O3 protective layer. <i>Applied Physics Letters</i> , 2012 , 101, 051605	3.4	11
116	Molecular ordering in bis(phenylenyl)bithiophenes. <i>Journal of Materials Chemistry</i> , 2007 , 17, 3427		11
115	Effect of metal/bulk-heterojunction interfacial properties on organic photovoltaic device performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 15288	13	10
114	Surface Oxide Characterization and Interface Evolution in Atomic Layer Deposition of Al2O3 on InP(100) Studied by in Situ Infrared Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 5862-5871	3.8	10
113	Surface Reactions of I-I -(tBu-acetylene)dicobalthexacarbonyl with Oxidized and H-terminated Si(111) Surfaces. <i>Chemistry of Materials</i> , 2011 , 23, 2068-2074	9.6	10
112	UV-induced immobilization of tethered zirconocenes on H-terminated silicon surfaces. <i>Chemical Communications</i> , 2008 , 1329-31	5.8	10
111	Wet Chemical Cleaning of Germanium Surfaces for Growth of High-k Dielectrics. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 917, 1		10
110	Vibrational study of indium phosphide oxides. <i>Surface Science</i> , 2002 , 502-503, 75-80	. 0	10
		1.8	10
109	Low temperature adsorption and reaction of NO on GaAs(110). <i>Chemical Physics Letters</i> , 1990 , 168, 203		10
109			
	Low temperature adsorption and reaction of NO on GaAs(110). <i>Chemical Physics Letters</i> , 1990 , 168, 203	-2057	10
108	Low temperature adsorption and reaction of NO on GaAs(110). <i>Chemical Physics Letters</i> , 1990 , 168, 203. Ammonia modification of oxide-free Si(111) surfaces. <i>Surface Science</i> , 2016 , 650, 285-294 Engineering Multilayered Nanocrystal Solids with Enhanced Optical Properties Using Metal Oxides	- 20 57	10
108	Low temperature adsorption and reaction of NO on GaAs(110). <i>Chemical Physics Letters</i> , 1990 , 168, 203. Ammonia modification of oxide-free Si(111) surfaces. <i>Surface Science</i> , 2016 , 650, 285-294 Engineering Multilayered Nanocrystal Solids with Enhanced Optical Properties Using Metal Oxides for Photonic Applications. <i>ACS Applied Nano Materials</i> , 2018 , 1, 6782-6789 Morphology and chemical termination of HF-etched Si3N4 surfaces. <i>Applied Physics Letters</i> , 2014 ,	- 20 <i>7</i> 1.8 5.6	10
107	Low temperature adsorption and reaction of NO on GaAs(110). <i>Chemical Physics Letters</i> , 1990 , 168, 203. Ammonia modification of oxide-free Si(111) surfaces. <i>Surface Science</i> , 2016 , 650, 285-294 Engineering Multilayered Nanocrystal Solids with Enhanced Optical Properties Using Metal Oxides for Photonic Applications. <i>ACS Applied Nano Materials</i> , 2018 , 1, 6782-6789 Morphology and chemical termination of HF-etched Si3N4 surfaces. <i>Applied Physics Letters</i> , 2014 , 105, 261603 Energy transfer from colloidal nanocrystals into Si substrates studied via photoluminescence photon counts and decay kinetics. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2013 ,	- 20 <i>5</i> 1.8 5.6	10 10 10
108 107 106	Low temperature adsorption and reaction of NO on GaAs(110). <i>Chemical Physics Letters</i> , 1990 , 168, 203. Ammonia modification of oxide-free Si(111) surfaces. <i>Surface Science</i> , 2016 , 650, 285-294 Engineering Multilayered Nanocrystal Solids with Enhanced Optical Properties Using Metal Oxides for Photonic Applications. <i>ACS Applied Nano Materials</i> , 2018 , 1, 6782-6789 Morphology and chemical termination of HF-etched Si3N4 surfaces. <i>Applied Physics Letters</i> , 2014 , 105, 261603 Energy transfer from colloidal nanocrystals into Si substrates studied via photoluminescence photon counts and decay kinetics. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2013 , 30, 2401 Modification of the Adhesive Properties of XeF2-Etched Aluminum Surfaces by Deposition of	- 20 57 1.8 5.6 3.4	10 10 10 9

101	Vibrational Studies of Ultra-Thin Oxides and Initial Silicon Oxidation. <i>Springer Series in Materials Science</i> , 2001 , 143-159	0.9	9
100	General Strategy for the Design of DNA Coding Sequences Applied to Nanoparticle Assembly. <i>Langmuir</i> , 2016 , 32, 9676-86	4	9
99	Luminescent Metal Organic Framework for Lithium Harvesting Applications. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 6561-6568	8.3	9
98	Thermal Atomic Layer Etching of Silica and Alumina Thin Films Using Trimethylaluminum with Hydrogen Fluoride or Fluoroform. <i>ACS Applied Materials & District States (Materials & District States)</i> 10, 31784-31794	9.5	9
97	Basic Mechanisms of Al Interaction with the ZnO Surface. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 12	27 8 Ø-12	27 8 8
96	Superior low-temperature NO catalytic performance of PrMn2O5 over SmMn2O5 mullite-type catalysts. <i>Catalysis Science and Technology</i> , 2019 , 9, 2758-2766	5.5	8
95	Nanopatterning on H-Terminated Si(111) Explained as Dynamic Equilibrium of the Chemical Reaction with Methanol. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 16947-16953	3.8	8
94	In Situ Infrared Absorption Study of Plasma-Enhanced Atomic Layer Deposition of Silicon Nitride. <i>Langmuir</i> , 2018 , 34, 2619-2629	4	8
93	Integrated Experimental-Theoretical Approach To Determine Reliable Molecular Reaction Mechanisms on Transition-Metal Oxide Surfaces. <i>ACS Applied Materials & Design Among Among Applied Materials & Design Among Applied Materials & Design Applied & Design Appli</i>	160 ² 3 ⁵ 04	.6 ⁸
92	A triptych photocatalyst based on the Co-Integration of Ag nanoparticles and carbo-benzene dye into a TiO2 thin film. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 26347-26360	6.7	8
91	Spectroscopic evaluation of out-of-plane surface vibration bands from surface functionalization of graphite oxide by fluorination. <i>Carbon</i> , 2014 , 77, 577-591	10.4	8
90	Anisotropic Optical Properties of Thin-Film Thiacarbocyanine Dye Aggregates. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 20186-20192	3.8	8
89	Comparative time-resolved study of the XeF2 etching of Mo and Si. <i>Journal of Applied Physics</i> , 2010 , 108, 114913	2.5	8
88	Thermal stability comparison of TaN on HfO2 and Al2O3. <i>Applied Physics Letters</i> , 2010 , 96, 151907	3.4	8
87	In-situ Studies of High-Dielectrics for Graphene-Based Device. ECS Transactions, 2009, 19, 215-224	1	8
86	AdsorbateBurface Phonon Interactions in Deuterium-Passivated Si(111)-(1 🗓). <i>Journal of Physical Chemistry C</i> , 2008 , 112, 1034-1039	3.8	8
85	ir study of molecules adsorbed on metal surfaces by surface electromagnetic wave spectroscopy. Journal of Vacuum Science and Technology, 1978, 15, 638-641		8
84	Initial nitride formation during plasma-nitridation of cobalt surfaces. <i>Applied Physics Letters</i> , 2016 , 109, 091602	3.4	8

(2010-2019)

83	Critical Role of Mullite-type Oxides Surface Chemistry on Catalytic NO Oxidation Performance. Journal of Physical Chemistry C, 2019 , 123, 5385-5393	3.8	8
82	Gold Nanoparticles on Functionalized Silicon Substrate under Coulomb Blockade Regime: An Experimental and Theoretical Investigation. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 897-903	3.4	7
81	Cluster assisted water dissociation mechanism in MOF-74 and controlling it using helium. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 11524-11530	13	7
8o	Adsorbate Interactions in Metal Organic Frameworks Studied by Vibrational Spectroscopy. <i>Comments on Inorganic Chemistry</i> , 2014 , 34, 78-102	3.9	7
79	Controlling the reproducibility of Coulomb blockade phenomena for gold nanoparticles on an organic monolayer/silicon system. <i>Nanotechnology</i> , 2015 , 26, 065301	3.4	7
78	Si2H6 Dissociative Chemisorption and Dissociation on Si(100)-(211) and Ge(100)-(211). <i>Journal of Physical Chemistry C</i> , 2011 , 115, 24534-24548	3.8	7
77	Alcohol washing as a way to stabilize the anatase phase of nanostructured titania through controlling particle packing. <i>Journal of Materials Science</i> , 2009 , 44, 5944-5948	4.3	7
76	Vibrational energy flow at stepped H/Si(111): phonons, dipoles and screening. <i>Faraday Discussions</i> , 1993 , 96, 217	3.6	7
75	Passivation and Characterization of Germanium Surfaces 2007 , 73-113		7
74	Surface and Interface Chemistry for Gate Stacks on Silicon. <i>Springer Series in Materials Science</i> , 2009 , 113-168	0.9	7
73	Alkylation of Silicon(111) surfaces. European Physical Journal Special Topics, 2006, 132, 195-198		7
72	Chemistry in confined spaces: reactivity of the Zn-MOF-74 channels. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13176-13182	13	7
71	Water Dissociation and Further Hydroxylation of Perfect and Defective Polar ZnO Model Surfaces. Journal of Physical Chemistry C, 2018 , 122, 21861-21873	3.8	7
70	Energy transfer from colloidal nanocrystals to strongly absorbing perovskites. <i>Nanoscale</i> , 2017 , 9, 8695	- 8 7/02	6
69	Nonuniform Composition Profiles in Amorphous Multimetal Oxide Thin Films Deposited from Aqueous Solution. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 37476-37483	9.5	6
68	Controlling Chemical Reactions in Confined Environments: Water Dissociation in MOF-74. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 270	2.6	6
67	Digermane Deposition on Si(100) and Ge(100): from Adsorption Mechanism to Epitaxial Growth. Journal of Physical Chemistry C, 2014 , 118, 482-493	3.8	6
66	Effects of TaN, Ru, and Pt electrodes on thermal stability of hafnium-based gate stacks. <i>Journal of Applied Physics</i> , 2010 , 107, 123505	2.5	6

65	Aqueous process to limit hydration of thin-film inorganic oxides. <i>Solid State Sciences</i> , 2016 , 61, 106-110	3.4	6
64	Cobalt and iron segregation and nitride formation from nitrogen plasma treatment of CoFeB surfaces. <i>Journal of Chemical Physics</i> , 2017 , 146, 052805	3.9	5
63	Oxidative Dehydrogenation of Cyclohexane and Cyclohexene over Y-doped CeO2 Nanorods. <i>Catalysis Letters</i> , 2017 , 147, 738-744	2.8	5
62	Al Interaction with ZnO Surfaces. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 17856-17864	3.8	5
61	Frustrated Etching during H/Si(111) Methoxylation Produces Fissured Fluorinated Surfaces, Whereas Direct Fluorination Preserves the Atomically Flat Morphology. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 26029-26037	3.8	5
60	Towards modelling the vibrational signatures of functionalized surfaces: carboxylic acids on H-Si(111) surfaces. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 124111	1.8	5
59	Colored porous silicon as support for plasmonic nanoparticles. <i>Journal of Applied Physics</i> , 2012 , 111, 084	13052	5
58	Multiscale modeling of interaction of alane clusters on Al(111) surfaces: a reactive force field and infrared absorption spectroscopy approach. <i>Journal of Chemical Physics</i> , 2010 , 132, 084509	3.9	5
57	Effective surface passivation methodologies for high performance germanium metal oxide semiconductor field effect transistors. <i>Applied Physics Letters</i> , 2008 , 93, 192115	3.4	5
56	In Situ Spectroscopic Approach to Atomic Layer Deposition. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 745, 241		5
55	Monitoring low-coverage surface chemistry with bulk transport: NO2 dissociation and oxygen penetration at a GaAs(110) surface. <i>Physical Review B</i> , 1990 , 42, 6865-6868	3.3	5
54	Controlled Deposition and Spectroscopic Signatures of Ordered Multilayer Nanocrystal Assemblies for Optoelectronic Applications. <i>Advanced Optical Materials</i> , 2016 , 4, 378-383	8.1	5
53	Nanocast carbon microsphere flowers from a lanthanum-based template. <i>Materials Letters</i> , 2019 , 234, 224-227	3.3	5
52	Role of Interfacial Aluminum Silicate and Silicon as Barrier Layers for Atomic Layer Deposition of Al2O3 Films on Chemically Cleaned InP(100) Surfaces. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 29164-	-2 ⁹ 179	, 4
51	Ab Initio Study of H2 Associative Desorption on Ad-Dimer Reconstructed Si(001) and Ge(001)-(211) Surfaces. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 10088-10096	3.8	4
50	Formation of Organic Monolayers Through Wet Chemistry 2012 , 301-337		4
49	FTIR study of copper agglomeration during atomic layer deposition of copper. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1155, 1		4
48	Mechanistic Studies of Dielectric Growth on Silicon 2005 , 367-401		4

(2006-1987)

47	Real-time study of self-sustained oscillations in the CO oxidation rate on Pt. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1987 , 5, 801-804	2.9	4
46	Applications of Infrared Absorption Spectroscopy to the Microelectronic Industry. <i>European Physical Journal Special Topics</i> , 1997 , 07, C6-3-C6-17		4
45	Reaction Mechanisms of the Atomic Layer Deposition of Tin Oxide Thin Films Using Tributyltin Ethoxide and Ozone. <i>Langmuir</i> , 2017 , 33, 5998-6004	4	3
44	Role of Surface Oxygen Vacancies in Intermediate Formation on Mullite-type Oxides upon NO Adsorption. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 15913-15919	3.8	3
43	Role of Trimethylaluminum in Low Temperature Atomic Layer Deposition of Silicon Nitride. <i>Chemistry of Materials</i> , 2017 , 29, 6022-6029	9.6	3
42	Generation and Capture of CO2 and CO in Graphite Oxide Stacks during Thermal Reduction. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1205, 10501		3
41	Characterization of Ru thin-film conductivity upon atomic layer deposition on H-passivated Si(111). <i>Journal of Applied Physics</i> , 2012 , 112, 113517	2.5	3
40	Wet chemical cleaning of plasma oxide grown on heated (001) InP surfaces. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2004 , 22, 1885		3
39	Silicon Surface Chemistry By IR Spectroscopy in the Mid- To Far-IR Region: H2O And Ethanol On Si(100). <i>Materials Research Society Symposia Proceedings</i> , 1995 , 386, 395		3
38	Yttrium Oxide-Catalyzed Formation of Electrically Conductive Carbon for Supercapacitors. <i>ACS Applied Energy Materials</i> , 2021 , 4, 12499-12507	6.1	3
37	Single Charge Electronics with Gold Nanoparticles and Organic Monolayers. <i>Materials Research Society Symposia Proceedings</i> , 2016 , 1817, 1		3
36	Understanding Thermal Evolution and Monolayer Doping of Sulfur-Passivated GaAs(100). <i>Journal of Physical Chemistry C</i> , 2018 , 122, 8414-8422	3.8	2
35	Nanoimaging of Organic Charge Retention Effects: Implications for Nonvolatile Memory, Neuromorphic Computing, and High Dielectric Breakdown Devices. <i>ACS Applied Nano Materials</i> , 2019 , 2, 4711-4716	5.6	2
34	Biexciton and trion energy transfer from CdSe/CdS giant nanocrystals to Si substrates. <i>Nanoscale</i> , 2017 , 9, 19398-19407	7.7	2
33	Germanium Surface Conditioning and Passivation 2011 , 429-472		2
32	Infrared analysis of biomolecule attachment to functionalized silicon surfaces 2011 , 83-113		2
31	Materials Science of Graphene for Novel Device Applications. <i>ECS Transactions</i> , 2009 , 19, 185-199	1	2
30	In situ infrared absorption spectroscopy for thin film growth by atomic layer deposition 2006,		2

29	Deposition of Iron on Si(111)-(7½): Photo- and Electron-Assisted Decomposition of Fe(CO)5. <i>Materials Research Society Symposia Proceedings</i> , 1986 , 75, 559		2
28	Infrared Spectroscopy of Si(111) and Si(100) Surfaces After HF Treatment: Hydrogen Termination and Surface Morphology. <i>Materials Research Society Symposia Proceedings</i> , 1988 , 131, 191		2
27	Integrated Experimental-Theoretical Approach to Determine Reliable Molecular Reaction Mechanisms on Transition Metal Oxide Surfaces		2
26	Infrared Spectroscopy of Semiconductor Surfaces. Springer Series in Surface Sciences, 1988, 109-150	0.4	2
25	Reorganization of a photosensitive carbo-benzene layer in a triptych nanocatalyst with enhancement of the photocatalytic hydrogen production from water. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 24765-24778	6.7	2
24	Mechanistic study of the atomic layer deposition of scandium oxide films using Sc(MeCp)2(Me2pz) and ozone. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2019 , 37, 011504	2.9	2
23	Selective Growth of Interface Layers from Reactions of Sc(MeCp)(Mepz) with Oxide Substrates. <i>ACS Applied Materials & Districted Material</i>	9.5	2
22	Atomically Traceable Nanostructure Fabrication. <i>Journal of Visualized Experiments</i> , 2015 , e52900	1.6	1
21	Examining the interlayer interactions formed between reduced graphene oxide and ionic liquids. <i>MRS Communications</i> , 2013 , 3, 67-71	2.7	1
20	Effects of fluid media on ultra-thin SOI based pH sensors 2009 ,		1
19	Atomic Layer Deposition of Ruthenium Films on Hydrogen terminated Silicon. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1156, 1		1
18	Raman Spectroscopy for Probing guest-host interactions in Metal Organic Frameworks. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1334, 60601		1
17	Ion backscattering study of ultra-thin oxides: Al2O3 and AlHfOx films on Si. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2005 , 241, 377-381	1.2	1
16	Mechanistic Studies of Wafer Bonding and Thin Silicon Film Exfoliation. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 587, O4.4.1		1
15	Structure And Kinetics Of Molecules At Surfaces 1989 , 1145, 34		1
14	Laser-Assisted Deposition of Fe and W: Photodecomposition of Fe(CO)5, and W(CO)6 on Si(111)-(711). <i>Materials Research Society Symposia Proceedings</i> , 1987 , 101, 201		1
13	Electrical and Structural Characterization of the Interface of Wafer Bonded InP/Si. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 763, 281		1
12	Lifetime of an Adsorbate Substrate Vibration: H on Si(111). Springer Series in Chemical Physics, 1990 , 37	4 & 376	1

LIST OF PUBLICATIONS

11	Atomic Mechanism of Arsenic Monolayer Doping on oxide-free Silicon(111). MRS Advances, 2016 , 1, 234592/353 1		
10	Biphenyl-bridged wrinkled mesoporous silica nanoparticles for radioactive iodine capture. <i>MRS Advances</i> , 2019 , 4, 435-439	0.7	
9	Surface Chemical Composition and Morphology 2018 , 505-577		
8	Controlled Silicon Surface Functionalization by Alkene Hydrosilylation. <i>Chemie-Ingenieur-Technik</i> , 2006 , 78, 1336-1336	0.8	
7	Electrical and Structural Characterization of the Interface of Wafer Bonded InP/Si. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 768, 241		
6	Structural Characterization of a Functionalized Organic Semiconductor. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 871, 1		
5	Size, Shape, and Crystallinity of Luminescent Structures in Oxidized Si Nanoclusters and H-Passivated Porous Si. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 358, 407		
4	X-Ray Absorption Spectroscopy from H-Passivated Porous Si and Oxidized Si Nanocrystals. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 375, 113		
3	Adsorption Sites, Bonding Configurations, Reactions and Mass Transport Surface. <i>Springer Handbooks</i> , 2020 , 853-902	1.3	
2	High-Resolution Infrared Spectroscopy and Surface Structure. <i>Springer Series in Surface Sciences</i> , 1985 , 70-76	0.4	