Yves Chabal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5475314/publications.pdf Version: 2024-02-01

	2970	4770
33,616	93	169
citations	h-index	g-index
435	435	31330
docs citations	times ranked	citing authors
	33,616 citations 435 docs citations	33,616 citations 93 h-index 435 docs citations 435 times ranked

VUES CHARAI

#	Article	IF	CITATIONS
1	Structural evolution during the reduction of chemically derived graphene oxide. Nature Chemistry, 2010, 2, 581-587.	6.6	1,573
2	Ideal hydrogen termination of the Si (111) surface. Applied Physics Letters, 1990, 56, 656-658.	1.5	1,415
3	Hydrothermal Synthesis of Graphene-TiO ₂ Nanotube Composites with Enhanced Photocatalytic Activity. ACS Catalysis, 2012, 2, 949-956.	5.5	863
4	The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 19761-19781.	1.5	776
5	Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nature Materials, 2010, 9, 840-845.	13.3	724
6	Infrared spectroscopy of Si(111) and Si(100) surfaces after HF treatment: Hydrogen termination and surface morphology. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 2104-2109.	0.9	638
7	Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nature Communications, 2012, 3, 1298.	5.8	538
8	Room-temperature metastability of multilayer graphene oxide films. Nature Materials, 2012, 11, 544-549.	13.3	512
9	Comparison of Si(111) surfaces prepared using aqueous solutions of NH4F versus HF. Applied Physics Letters, 1991, 58, 1656-1658.	1.5	497
10	Infrared spectroscopy of Si(111) surfaces after HF treatment: Hydrogen termination and surface morphology. Applied Physics Letters, 1988, 53, 998-1000.	1.5	473
11	Enhanced Binding Affinity, Remarkable Selectivity, and High Capacity of CO ₂ by Dual Functionalization of a <i>rht</i> â€Type Metal–Organic Framework. Angewandte Chemie - International Edition, 2012, 51, 1412-1415.	7.2	430
12	Attachment of 3-(Aminopropyl)triethoxysilane on Silicon Oxide Surfaces: Dependence on Solution Temperature. Langmuir, 2008, 24, 12963-12971.	1.6	405
13	Stability and Hydrolyzation of Metal Organic Frameworks with Paddle-Wheel SBUs upon Hydration. Chemistry of Materials, 2012, 24, 3153-3167.	3.2	368
14	Mechanism of HF etching of silicon surfaces: A theoretical understanding of hydrogen passivation. Physical Review Letters, 1990, 65, 504-507.	2.9	365
15	Atomic-scale conversion of clean Si(111):H-1×1 to Si(111)-2×1 by electron-stimulated desorption. Physical Review Letters, 1990, 65, 1917-1920.	2.9	359
16	The Role of Intercalated Water in Multilayered Graphene Oxide. ACS Nano, 2010, 4, 5861-5868.	7.3	359
17	New Ordered Structure for the H-Saturated Si(100) Surface: The (3×1) Phase. Physical Review Letters, 1985, 54, 1055-1058.	2.9	325
18	Size, shape, and composition of luminescent species in oxidized Si nanocrystals and H-passivated porous Si. Physical Review B, 1995, 52, 4910-4925.	1.1	323

#	Article	IF	CITATIONS
19	Highly Efficient Luminescent Metal–Organic Framework for the Simultaneous Detection and Removal of Heavy Metals from Water. ACS Applied Materials & Interfaces, 2016, 8, 30294-30303.	4.0	320
20	Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 2363-2372.	6.6	310
21	Chemical etching of vicinal Si(111): Dependence of the surface structure and the hydrogen termination on the pH of the etching solutions. Journal of Chemical Physics, 1991, 95, 2897-2909.	1.2	309
22	Surface Infrared Study of Si(100)-(2×1)H. Physical Review Letters, 1984, 53, 282-285.	2.9	306
23	Vanadium Oxide Nanowire–Carbon Nanotube Binderâ€Free Flexible Electrodes for Supercapacitors. Advanced Energy Materials, 2011, 1, 936-945.	10.2	303
24	Synthesis, Characterization, and Photocatalytic Activity of Y-Doped CeO ₂ Nanorods. ACS Catalysis, 2014, 4, 577-584.	5.5	301
25	HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition. Applied Physics Letters, 2005, 86, 152904.	1.5	300
26	On the mechanism of the hydrogen-induced exfoliation of silicon. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1997, 15, 1065.	1.6	298
27	Dimensions of luminescent oxidized and porous silicon structures. Physical Review Letters, 1994, 72, 2648-2651.	2.9	294
28	Tuning the Gate Opening Pressure of Metal–Organic Frameworks (MOFs) for the Selective Separation of Hydrocarbons. Journal of the American Chemical Society, 2012, 134, 15201-15204.	6.6	278
29	Metal Contacts on Physical Vapor Deposited Monolayer MoS ₂ . ACS Nano, 2013, 7, 11350-11357.	7.3	275
30	Lifetime of an adsorbate-substrate vibration: H on Si(111). Physical Review Letters, 1990, 64, 2156-2159.	2.9	263
31	High ε gate dielectrics Gd2O3 and Y2O3 for silicon. Applied Physics Letters, 2000, 77, 130-132.	1.5	255
32	Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nature Communications, 2018, 9, 1745.	5.8	251
33	Properties of high κ gate dielectrics Gd2O3 and Y2O3 for Si. Journal of Applied Physics, 2001, 89, 3920-3927.	1.1	250
34	Infrared spectroscopic analysis of the Si/SiO2 interface structure of thermally oxidized silicon. Journal of Applied Physics, 2000, 87, 1322-1330.	1.1	249
35	Adsorbate-substrate resonant interactions observed for CO on Cu(100) in the far infrared. Physical Review Letters, 1990, 65, 480-483.	2.9	244
36	Coupling of an adsorbate vibration to a substrate surface phonon: H on Si(111). Physical Review Letters, 1990, 65, 1124-1127.	2.9	239

#	Article	IF	CITATIONS
37	Recovery of Nonwetting Characteristics by Surface Modification of Gallium-Based Liquid Metal Droplets Using Hydrochloric Acid Vapor. ACS Applied Materials & Interfaces, 2013, 5, 179-185.	4.0	225
38	Simultaneous Trapping of C ₂ H ₂ and C ₂ H ₆ from a Ternary Mixture of C ₂ H ₂ /C ₂ H ₄ /C ₂ H ₆ in a Robust Metal–Organic Framework for the Purification of C ₂ H ₄ . Angewandte Chemie - International Edition, 2018, 57, 16067-16071.	7.2	223
39	InitialH2O-induced Oxidation of Si(100)–(2×1). Physical Review Letters, 1997, 79, 2851-2854.	2.9	204
40	Evidence of dissociation of water on the Si(100)2 $ ilde{A}$ — 1 surface. Physical Review B, 1984, 29, 6974-6976.	1.1	199
41	Metallic Contact Formation for Molecular Electronics:Â Interactions between Vapor-Deposited Metals and Self-Assembled Monolayers of Conjugated Mono- and Dithiols. Langmuir, 2004, 20, 1539-1542.	1.6	194
42	Genipinâ€induced changes in collagen gels: Correlation of mechanical properties to fluorescence. Journal of Biomedical Materials Research - Part A, 2008, 87A, 308-320.	2.1	185
43	Enhancing Gas Adsorption and Separation Capacity through Ligand Functionalization of Microporous Metal–Organic Framework Structures. Chemistry - A European Journal, 2011, 17, 5101-5109.	1.7	176
44	Sensing the Charge State of Single Gold Nanoparticles via Work Function Measurements. Nano Letters, 2015, 15, 51-55.	4.5	174
45	Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps. Nature Communications, 2017, 8, 485.	5.8	171
46	Microscopic Co Diffusion on a Pt(111) Surface by Time-Resolved Infrared Spectroscopy. Physical Review Letters, 1988, 61, 2778-2781.	2.9	166
47	Hydrogen chemisorption on Si(111)-(7×7) and -(1×1) surfaces. A comparative infrared study. Physical Review B, 1983, 28, 4472-4479.	1.1	158
48	Electronic Damping of Hydrogen Vibration on the W(100) Surface. Physical Review Letters, 1985, 55, 845-848.	2.9	158
49	Competitive Coadsorption of CO ₂ with H ₂ O, NH ₃ , SO ₂ , NO, NO ₂ , N ₂ , O ₂ , and CH ₄ in M-MOF-74 (M = Mg, Co, Ni): The Role of Hydrogen Bonding. Chemistry of Materials, 2015, 27, 2203-2217.	3.2	158
50	Nucleation and interface formation mechanisms in atomic layer deposition of gate oxides. Applied Physics Letters, 2003, 82, 4758-4760.	1.5	155
51	Understanding and controlling water stability of MOF-74. Journal of Materials Chemistry A, 2016, 4, 5176-5183.	5.2	155
52	Electronic structure and its dependence on local order for H/Si(111)-(1×1) surfaces. Physical Review Letters, 1993, 70, 1992-1995.	2.9	153
53	Infrared linewidths and vibrational lifetimes at surfaces: H on Si(100). Physical Review B, 1985, 31, 1184-1186.	1.1	149
54	Water Reaction Mechanism in Metal Organic Frameworks with Coordinatively Unsaturated Metal lons: MOF-74. Chemistry of Materials, 2014, 26, 6886-6895.	3.2	149

#	Article	IF	CITATIONS
55	Water interactions in metal organic frameworks. CrystEngComm, 2015, 17, 247-260.	1.3	148
56	Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro. Journal of Applied Physics, 2010, 108, .	1.1	145
57	Interfacial charge distributions in carbon-supported palladium catalysts. Nature Communications, 2017, 8, 340.	5.8	145
58	Infrared Characterization of Interfacial Siâ^'O Bond Formation on Silanized Flat SiO ₂ /Si Surfaces. Langmuir, 2010, 26, 4563-4566.	1.6	144
59	Hydrogen passivation of germanium (100) surface using wet chemical preparation. Applied Physics Letters, 2005, 87, 253101.	1.5	143
60	Vanadium oxide nanowire – Graphene binder free nanocomposite paper electrodes for supercapacitors: A facile green approach. Journal of Power Sources, 2013, 230, 130-137.	4.0	142
61	Field Emission from Atomically Thin Edges of Reduced Graphene Oxide. ACS Nano, 2011, 5, 4945-4952.	7.3	139
62	Hydride formation on the Si(100):H2O surface. Physical Review B, 1984, 29, 3677-3680.	1.1	135
63	Nanopatterning Si(111) surfaces as a selective surface-chemistry route. Nature Materials, 2010, 9, 266-271.	13.3	133
64	Synthesis and Characterization of Conjugated Mono- and Dithiol Oligomers and Characterization of Their Self-Assembled Monolayers. Langmuir, 2003, 19, 4272-4284.	1.6	132
65	Alkaline deoxygenated graphene oxide for supercapacitor applications: An effective green alternative for chemically reduced graphene. Journal of Power Sources, 2012, 215, 1-10.	4.0	128
66	Mechanism of Preferential Adsorption of SO ₂ into Two Microporous Paddle Wheel Frameworks M(bdc)(ted) _{0.5} . Chemistry of Materials, 2013, 25, 4653-4662.	3.2	127
67	CO diffusion on Pt(111) with timeâ€resolved infraredâ€pulsed molecular beam methods: Critical tests and analysis. Journal of Chemical Physics, 1990, 93, 9113-9129.	1.2	126
68	Nanochemistry at the atomic scale revealed in hydrogen-induced semiconductor surface metallization. Nature Materials, 2003, 2, 253-258.	13.3	125
69	Manganese oxide nanorod–graphene/vanadium oxide nanowire–graphene binder-free paper electrodes for metal oxide hybrid supercapacitors. Nano Energy, 2013, 2, 966-975.	8.2	125
70	Chemical Properties of Oxidized Silicon Carbide Surfaces upon Etching in Hydrofluoric Acid. Journal of the American Chemical Society, 2009, 131, 16808-16813.	6.6	124
71	Nature of Graphene Edges: A Review. Japanese Journal of Applied Physics, 2011, 50, 070101.	0.8	121
72	Metal–Graphene–Metal Sandwich Contacts for Enhanced Interface Bonding and Work Function Control. ACS Nano, 2012, 6, 5381-5387.	7.3	114

#	Article	IF	CITATIONS
73	Water Cluster Confinement and Methane Adsorption in the Hydrophobic Cavities of a Fluorinated Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135, 12615-12626.	6.6	114
74	Rational design of common transition metal-nitrogen-carbon catalysts for oxygen reduction reaction in fuel cells. Nano Energy, 2016, 30, 443-449.	8.2	114
75	Enhanced initial growth of atomic-layer-deposited metal oxides on hydrogen-terminated silicon. Applied Physics Letters, 2003, 83, 740-742.	1.5	113
76	Nature of Graphene Edges: A Review. Japanese Journal of Applied Physics, 2011, 50, 070101.	0.8	113
77	Silicon Epoxide: Unexpected Intermediate during Silicon Oxide Formation. Physical Review Letters, 1998, 81, 3908-3911.	2.9	112
78	Exfoliated graphite nanoplatelets–V2O5 nanotube composite electrodes for supercapacitors. Journal of Power Sources, 2012, 203, 227-232.	4.0	112
79	Effective sensing of RDX via instant and selective detection of ketone vapors. Chemical Science, 2014, 5, 4873-4877.	3.7	112
80	â"PM3: A Multifunctional Microporous MOF with Recyclable Framework and High H2 Binding Energy. Inorganic Chemistry, 2009, 48, 7165-7173.	1.9	109
81	Hydrogen Vibration on Si(111) 7 × 7: Evidence for a Unique Chemisorption Site. Physical Review Letters, 1983, 50, 1850-1853.	2.9	108
82	Characteristics of high-k Al2O3 dielectric using ozone-based atomic layer deposition for dual-gated graphene devices. Applied Physics Letters, 2010, 97, .	1.5	108
83	Selective, Sensitive, and Reversible Detection of Vapor-Phase High Explosives via Two-Dimensional Mapping: A New Strategy for MOF-Based Sensors. Crystal Growth and Design, 2013, 13, 4204-4207.	1.4	107
84	Vibrational energy transfer on hydrogenâ€ŧerminated vicinal Si(111) surfaces: Interadsorbate energy flow. Journal of Chemical Physics, 1992, 96, 6203-6212.	1.2	106
85	The Effect of Methyl Functionalization on Microporous Metalâ€Organic Frameworks' Capacity and Binding Energy for Carbon Dioxide Adsorption. Advanced Functional Materials, 2011, 21, 4754-4762.	7.8	106
86	Understanding the Preferential Adsorption of CO ₂ over N ₂ in a Flexible Metal–Organic Framework. Journal of the American Chemical Society, 2011, 133, 12849-12857.	6.6	103
87	Progression of Solid Electrolyte Interphase Formation on Hydrogenated Amorphous Silicon Anodes for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 9072-9077.	1.5	99
88	Interaction of Acid Gases SO ₂ and NO ₂ with Coordinatively Unsaturated Metal Organic Frameworks: M-MOF-74 (M = Zn, Mg, Ni, Co). Chemistry of Materials, 2017, 29, 4227-4235.	3.2	99
89	Infrared Absorption ina-Si: H: First Observation of Gaseous MolecularH2and Si-H Overtone. Physical Review Letters, 1984, 53, 210-213.	2.9	98
90	Diffusion of Small Molecules in Metal Organic Framework Materials. Physical Review Letters, 2013, 110, 026102.	2.9	98

#	Article	IF	CITATIONS
91	Mechanism of Carbon Dioxide Adsorption in a Highly Selective Coordination Network Supported by Direct Structural Evidence. Angewandte Chemie - International Edition, 2013, 52, 1692-1695.	7.2	97
92	Role of Interdimer Interactions inNH3Dissociation onSi(100)â^'(2×1). Physical Review Letters, 2001, 86, 1046-1049.	2.9	96
93	Mechanism of silicon exfoliation induced by hydrogen/helium co-implantation. Applied Physics Letters, 1998, 73, 3721-3723.	1.5	95
94	Infrared Characterization of Biotinylated Silicon Oxide Surfaces, Surface Stability, and Specific Attachment of Streptavidin. Journal of Physical Chemistry B, 2009, 113, 8776-8783.	1.2	94
95	Photoemission and band-structure results for NiSi2. Physical Review B, 1982, 25, 7598-7602.	1.1	93
96	Realistic Metal–Graphene Contact Structures. ACS Nano, 2014, 8, 642-649.	7.3	93
97	Rapid desolvation-triggered domino lattice rearrangement in a metal–organic framework. Nature Chemistry, 2020, 12, 90-97.	6.6	93
98	Copperâ^'Metal Deposition on Self Assembled Monolayer for Making Top Contacts in Molecular Electronic Devices. Journal of the American Chemical Society, 2009, 131, 18159-18167.	6.6	91
99	Influence of silicon oxide on the morphology of HFâ€etched Si(111) surfaces: Thermal versus chemical oxide. Applied Physics Letters, 1991, 59, 2968-2970.	1.5	90
100	Interfacial Chemistry in Al/CuO Reactive Nanomaterial and Its Role in Exothermic Reaction. ACS Applied Materials &	4.0	90
101	In situ infrared spectroscopy of hafnium oxide growth on hydrogen-terminated silicon surfaces by atomic layer deposition. Applied Physics Letters, 2005, 87, 133103.	1.5	89
102	Rapid Selective Etching of PMMA Residues from Transferred Graphene by Carbon Dioxide. Journal of Physical Chemistry C, 2013, 117, 23000-23008.	1.5	89
103	Coupling of H vibration to substrate electronic states in Mo(100)-p(1×1)H and W(100)-p(1×1)H: Example of strong breakdown of adiabaticity. Physical Review B, 1988, 38, 3112-3132.	1.1	88
104	Stability of HF-etched Si(100) surfaces in oxygen ambient. Applied Physics Letters, 2001, 79, 4051-4053.	1.5	88
105	Interaction of Molecular Hydrogen with Microporous Metal Organic Framework Materials at Room Temperature. Journal of the American Chemical Society, 2010, 132, 1654-1664.	6.6	88
106	Chemomechanical polishing of silicon: Surface termination and mechanism of removal. Applied Physics Letters, 1994, 64, 3115-3117.	1.5	87
107	Suppression of subcutaneous oxidation during the deposition of amorphous lanthanum aluminate on silicon. Applied Physics Letters, 2004, 84, 4629-4631.	1.5	87
108	Precursor design and reaction mechanisms for the atomic layer deposition of metal films. Coordination Chemistry Reviews, 2013, 257, 3271-3281.	9.5	82

#	Article	IF	CITATIONS
109	Silicon Surface Modification and Characterization for Emergent Photovoltaic Applications Based on Energy Transfer. Chemical Reviews, 2015, 115, 12764-12796.	23.0	81
110	Transmission Infrared Spectroscopy of Methyl- and Ethyl-Terminated Silicon(111) Surfaces. Journal of Physical Chemistry B, 2006, 110, 7349-7356.	1.2	80
111	In Situ Infrared Characterization during Atomic Layer Deposition of Lanthanum Oxide. Journal of Physical Chemistry C, 2009, 113, 654-660.	1.5	80
112	Laserâ€assisted deposition of iron on Si(111)â€{7×7): The mechanism and energetics of Fe(CO)5 decomposition. Journal of Chemical Physics, 1987, 87, 5028-5037.	1.2	79
113	A vibrational study of ethanol adsorption on Si(100). Journal of Chemical Physics, 1997, 106, 9889-9898.	1.2	79
114	Measuring the structure of etched silicon surfaces with Raman spectroscopy. Journal of Chemical Physics, 1994, 101, 8055-8072.	1.2	77
115	High-Resolution Infrared Study of Hydrogen (1×1) on Tungsten (100). Physical Review Letters, 1980, 44, 944-947.	2.9	76
116	Partially oxidized graphene as a precursor to graphene. Journal of Materials Chemistry, 2011, 21, 11217.	6.7	76
117	Silanone(Si=O)on Si(100): intermediate for initial silicon oxidation. Physical Review B, 2002, 66, .	1.1	75
118	Physics and chemistry of silicon wafer bonding investigated by infrared absorption spectroscopy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1996, 14, 3095.	1.6	74
119	Si–H bending modes as a probe of local chemical structure: Thermal and chemical routes to decomposition of H2O on Si(100)-(2×1). Journal of Chemical Physics, 2000, 113, 2440-2446.	1.2	74
120	Materials Characterization of Alternative Gate Dielectrics. MRS Bulletin, 2002, 27, 206-211.	1.7	74
121	Surface and Interface Processes during Atomic Layer Deposition of Copper on Silicon Oxide. Langmuir, 2010, 26, 3911-3917.	1.6	73
122	Environment-Controlled Tethering by Aggregation and Growth of Phosphonic Acid Monolayers on Silicon Oxide. Langmuir, 2012, 28, 8046-8051.	1.6	73
123	Infrared study of the chemisorption of hydrogen and water on vicinal Si(100) 2×1 surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1985, 3, 1448-1451.	0.9	71
124	Chlorination of hydrogen-terminated silicon (111) surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 1100-1106.	0.9	71
125	Wet chemical surface functionalization of oxide-free silicon. Progress in Surface Science, 2012, 87, 272-290.	3.8	71
126	Simultaneous Trapping of C ₂ H ₂ and C ₂ H ₆ from a Ternary Mixture of C ₂ H ₂ /C ₂ H ₄ /C ₂ H ₆ in a Robust Metal–Organic Framework for the Purification of C ₂ H ₄ . Angewandte Chemie, 2018, 130, 16299-16303.	1.6	71

#	Article	IF	CITATIONS
127	Low-Temperature Synthesis of a TiO ₂ /Si Heterojunction. Journal of the American Chemical Society, 2015, 137, 14842-14845.	6.6	70
128	Selective Extraction of Thorium from Rare Earth Elements Using Wrinkled Mesoporous Carbon. Journal of the American Chemical Society, 2018, 140, 14735-14739.	6.6	70
129	Lowâ€frequency dynamics of CO/Cu breakdown of Born–Oppenheimer approximation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1994, 12, 2229-2234.	0.9	69
130	Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films. Nanoscale, 2016, 8, 1627-1634.	2.8	69
131	Controlled Deposition of Gold Nanoparticles on Well-Defined Organic Monolayer Grafted on Silicon Surfaces. Journal of Physical Chemistry C, 2010, 114, 14180-14186.	1.5	68
132	Activation of Surface Hydroxyl Groups by Modification of H-Terminated Si(111) Surfaces. Journal of the American Chemical Society, 2012, 134, 8869-8874.	6.6	68
133	Enhancing the Reactivity of Al/CuO Nanolaminates by Cu Incorporation at the Interfaces. ACS Applied Materials & Interfaces, 2015, 7, 11713-11718.	4.0	68
134	Buckling Reconstruction on Laser-Annealed Si(111) Surfaces. Physical Review Letters, 1981, 46, 600-603.	2.9	67
135	Atomic Scale Oxidation of a Complex System:O2/α-SiC(0001)-(3×3). Physical Review Letters, 2001, 86, 4342-4345.	2.9	67
136	Hafnium oxide gate dielectrics grown from an alkoxide precursor: structure and defects. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 109, 6-10.	1.7	67
137	Oriented Graphene Nanoribbon Yarn and Sheet from Aligned Multiâ€Walled Carbon Nanotube Sheets. Advanced Materials, 2012, 24, 5695-5701.	11.1	67
138	Summary Abstract: Surface state optical absorption on the clean Si(100)2×1 surface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1983, 1, 1241-1242.	0.9	66
139	When metal organic frameworks turn into linear magnets. Physical Review B, 2013, 87, .	1.1	65
140	Infrared Spectroscopic Investigation of the Reaction of Hydrogen-Terminated, (111)-Oriented, Silicon Surfaces with Liquid Methanol. Journal of Physical Chemistry B, 2006, 110, 20426-20434.	1.2	64
141	Monolayer Doping via Phosphonic Acid Grafting on Silicon: Microscopic Insight from Infrared Spectroscopy and Density Functional Theory Calculations. Advanced Functional Materials, 2013, 23, 3471-3477.	7.8	64
142	Stable and Active Oxidation Catalysis by Cooperative Lattice Oxygen Redox on SmMn ₂ O ₅ Mullite Surface. Journal of the American Chemical Society, 2019, 141, 10722-10728.	6.6	64
143	Vibrational energy transfer among adsorbate modes: Picosecond dynamics on stepped H/Si(111). Journal of Chemical Physics, 1993, 99, 6114-6125.	1.2	63
144	Molecular Hydrogen "Pairing―Interaction in a Metal Organic Framework System with Unsaturated Metal Centers (MOF-74). Journal of the American Chemical Society, 2010, 132, 14834-14848.	6.6	61

#	Article	IF	CITATIONS
145	Characterization and production metrology of thin transistor gate oxide films. Materials Science in Semiconductor Processing, 1999, 2, 103-147.	1.9	60
146	Trapping gases in metal-organic frameworks with a selective surface molecular barrier layer. Nature Communications, 2016, 7, 13871.	5.8	60
147	The surface science of semiconductor processing: gate oxides in the ever-shrinking transistor. Surface Science, 2002, 500, 859-878.	0.8	59
148	Infrared spectroscopic analysis of an ordered Si/SiO2 interface. Applied Physics Letters, 2004, 84, 493-495.	1.5	59
149	Efficient Radiative and Nonradiative Energy Transfer from Proximal CdSe/ZnS Nanocrystals into Silicon Nanomembranes. ACS Nano, 2012, 6, 5574-5582.	7.3	59
150	Graphitization of Graphene Oxide with Ethanol during Thermal Reduction. Journal of Physical Chemistry C, 2012, 116, 9969-9979.	1.5	59
151	Detection of a Formate Surface Intermediate in the Atomic Layer Deposition of High-κ Dielectrics Using Ozone. Chemistry of Materials, 2008, 20, 3248-3250.	3.2	58
152	Controlling the Atomic Layer Deposition of Titanium Dioxide on Silicon: Dependence on Surface Termination. Journal of Physical Chemistry C, 2013, 117, 20250-20259.	1.5	58
153	Mechanistic studies of silicon oxidation. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 1795.	1.6	57
154	Controlled Silicon Surface Functionalization by Alkene Hydrosilylation. Journal of the American Chemical Society, 2005, 127, 12798-12799.	6.6	57
155	Nitrogen interaction with hydrogen-terminated silicon surfaces at the atomic scale. Nature Materials, 2009, 8, 825-830.	13.3	57
156	Substrate Selectivity of (^t Bu-Allyl)Co(CO) ₃ during Thermal Atomic Layer Deposition of Cobalt. Chemistry of Materials, 2012, 24, 1025-1030.	3.2	57
157	Low temperature formation of Si(111)7×7 surfaces from chemically prepared H/Si(111)â€(1×1) surfaces. Applied Physics Letters, 1994, 64, 3308-3310.	1.5	56
158	Infraredâ€absorption spectroscopy of Si(100) and Si(111) surfaces after chemomechanical polishing. Journal of Applied Physics, 1995, 78, 1650-1658.	1.1	56
159	Control and stability of self-assembled monolayers under biosensing conditions. Journal of Materials Chemistry, 2011, 21, 4384.	6.7	55
160	Molecular hydrogen ina-Si: H. Reviews of Modern Physics, 1987, 59, 835-844.	16.4	54
161	Interaction of H, O2, and H2O with 3C-SiC surfaces. Journal of Chemical Physics, 2003, 119, 6201-6209.	1.2	54
162	Gas phase chlorination of hydrogen-passivated silicon surfaces. Applied Physics Letters, 2004, 85, 2583-2585.	1.5	54

#	Article	IF	CITATIONS
163	Atomic Layer Deposition of Aluminum Oxide on Carboxylic Acid-Terminated Self-Assembled Monolayers. Langmuir, 2009, 25, 1911-1914.	1.6	54
164	Quenching of photoluminescence in a Zn-MOF sensor by nitroaromatic molecules. Journal of Materials Chemistry C, 2019, 7, 2625-2632.	2.7	54
165	Superior catalytic performance of Mn-Mullite over Mn-Perovskite for NO oxidation. Catalysis Today, 2018, 310, 195-201.	2.2	52
166	Heterogeneous nucleation of oxygen on silicon:â€∱Hydroxyl-mediated interdimer coupling onSi(100)â^'(2×1). Physical Review B, 1998, 58, R13434-R13437.	1.1	51
167	Investigation of the Chemical Purity of Silicon Surfaces Reacted with Liquid Methanol. Journal of Physical Chemistry C, 2008, 112, 11907-11919.	1.5	50
168	Electron energy loss spectroscopy of Hâ€ŧerminated Si(111) and Si(100) prepared by chemical etching. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 2160-2165.	0.9	49
169	H-induced structural phase transitions on W(100) by surface infrared spectroscopy. Physical Review B, 1986, 33, 7906-7916.	1.1	48
170	Characterization of silicon surfaces and interfaces by optical vibrational spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 1719-1727.	0.9	48
171	Characterization of Ultra-Thin Hafnium Oxide Films Grown on Silicon by Atomic Layer Deposition Using Tetrakis(ethylmethyl-amino) Hafnium and Water Precursors. Chemistry of Materials, 2007, 19, 3127-3138.	3.2	48
172	Testing the effect of surface coatings on alkali atom polarization lifetimes. Journal of Applied Physics, 2008, 104, .	1.1	48
173	Giant PbSe/CdSe/CdSe Quantum Dots: Crystal-Structure-Defined Ultrastable Near-Infrared Photoluminescence from Single Nanocrystals. Journal of the American Chemical Society, 2017, 139, 11081-11088.	6.6	48
174	Structure and Chemical Characterization at the Atomic Level of Reactions in Al/CuO Multilayers. ACS Applied Energy Materials, 2018, 1, 1762-1770.	2.5	48
175	Oxidation of H-covered flat and vicinal Si(111)-1×1 surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 1725-1729.	0.9	47
176	Theoretical and experimental analysis ofH2binding in a prototypical metal-organic framework material. Physical Review B, 2009, 79, .	1.1	47
177	Elementary Surface Chemistry during CuO/Al Nanolaminate-Thermite Synthesis: Copper and Oxygen Deposition on Aluminum (111) Surfaces. ACS Applied Materials & Interfaces, 2014, 6, 15086-15097.	4.0	47
178	Broadband transient absorption study of photoexcitations in lead halide perovskites: Towards a multiband picture. Physical Review B, 2016, 93, .	1.1	47
179	MOLECULES AT SURFACES AND INTERFACES STUDIED USING VIBRATIONAL SPECTROSCOPIES AND RELATED TECHNIQUES. Surface Review and Letters, 1999, 06, 225-255.	0.5	46
180	Analyzing the frequency shift of physiadsorbed CO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>in metal organic framework materials. Physical Review B, 2012, 85, .</mml:math 	1.1	46

#	Article	IF	CITATIONS
181	Impact of Ionic Liquids on the Exfoliation of Graphite Oxide. Journal of Physical Chemistry C, 2012, 116, 7867-7873.	1.5	46
182	Inverse-photoemission spectroscopy of the unreconstructed, ideally H-terminated Si(111) surface. Physical Review B, 1992, 45, 1187-1192.	1.1	45
183	Modified phonon confinement model for Raman spectroscopy of nanostructured materials. Physical Review B, 2010, 82, .	1.1	45
184	Reconstructive phase transitions and effective adsorbate-adsorbate interactions: H/Mo(100) and H/W(100). Physical Review Letters, 1987, 58, 1877-1880.	2.9	44
185	Raman studies of steric hindrance and surface relaxation of stepped H-terminated silicon surfaces. Physical Review Letters, 1993, 71, 2280-2283.	2.9	44
186	Realâ€Time, In Situ Monitoring of Roomâ€Temperature Silicon Surface Cleaning Using Hydrogen and Ammonia Plasmas. Journal of the Electrochemical Society, 1993, 140, 3316-3321.	1.3	43
187	In-Situ FTIR Studies of Reactions at the Silicon/Liquid Interface:  Wet Chemical Etching of Ultrathin SiO2 on Si(100). Journal of Physical Chemistry B, 2001, 105, 3903-3907.	1.2	43
188	Wet chemical cleaning of InP surfaces investigated byin situandex situinfrared spectroscopy. Journal of Applied Physics, 2003, 94, 2707-2715.	1.1	43
189	Structure Matters: Correlating temperature dependent electrical transport through alkyl monolayers with vibrational and photoelectron spectroscopies. Chemical Science, 2012, 3, 851-862.	3.7	43
190	Temperature Dependence of the Far-Infrared Absorption Spectrum in Amorphous Dielectrics. Physical Review Letters, 1975, 35, 1352-1355.	2.9	42
191	Coherence Effects in Long-Wavelength Infrared Synchrotron Radiation Emission. Physical Review Letters, 1989, 62, 261-263.	2.9	42
192	Structural, elastic, thermal, and electronic responses of small-molecule-loaded metal–organic framework materials. Journal of Materials Chemistry A, 2015, 3, 986-995.	5.2	42
193	Modulation of Water Vapor Sorption by a Fourth-Generation Metal–Organic Material with a Rigid Framework and Self-Switching Pores. Journal of the American Chemical Society, 2018, 140, 12545-12552.	6.6	42
194	Discrete nature of inhomogeneity on stepped H/Si(111) surfaces: Spectroscopic identification of individual terrace sizes. Physical Review B, 1993, 47, 6839-6842.	1.1	41
195	Atomic layer deposition ofAl2O3on H-passivated Si: Al(CH3)2OHsurface reactions withH/Si(100)â^'2×1. Physical Review B, 2003, 68, .	1.1	41
196	Turning aluminium into a noble-metal-like catalystÂforÂlow-temperature activation of molecularÂhydrogen. Nature Materials, 2011, 10, 884-889.	13.3	41
197	High stability of ultra-small and isolated gold nanoparticles in metal–organic framework materials. Journal of Materials Chemistry A, 2019, 7, 17536-17546.	5.2	41
198	Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates. Applied Physics Letters, 2011, 98, 161904.	1.5	40

#	Article	IF	CITATIONS
199	Controlled, Low-Coverage Metal Oxide Activation of Silicon for Organic Functionalization: Unraveling the Phosphonate Bond. Langmuir, 2012, 28, 17494-17505.	1.6	40
200	Selectivity of metal oxide atomic layer deposition on hydrogen terminated and oxidized Si(001)-(2×1) surface. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, .	0.6	40
201	Solid Hydrogen in Amorphous Silicon: Phase Transition. Physical Review Letters, 1984, 53, 1771-1774.	2.9	39
202	Atomic Layer Deposition of Ru/RuO ₂ Thin Films Studied by In situ Infrared Spectroscopy. Chemistry of Materials, 2010, 22, 4867-4878.	3.2	39
203	Ligand Functionalization and Its Effect on CO ₂ Adsorption in Microporous Metal–Organic Frameworks. Chemistry - an Asian Journal, 2013, 8, 778-785.	1.7	39
204	Infrared synchrotron radiation measurements at Brookhaven. Review of Scientific Instruments, 1989, 60, 2176-2178.	0.6	38
205	Infrared characterization of hafnium oxide grown by atomic layer deposition using ozone as the oxygen precursor. Applied Physics Letters, 2007, 90, 022906.	1.5	38
206	Role of hydrogen in hydrogen-induced layer exfoliation of germanium. Physical Review B, 2007, 75, .	1.1	38
207	Spectroscopic Evidence for the Influence of the Benzene Sites on Tightly Bound H ₂ in Metalâ^'Organic Frameworks with Unsaturated Metal Centers: MOF-74-Cobalt. Journal of the American Chemical Society, 2011, 133, 4782-4784.	6.6	38
208	Investigation of the Reactions during Alkylation of Chlorine-Terminated Silicon (111) Surfaces. Journal of Physical Chemistry C, 2007, 111, 13053-13061.	1.5	37
209	Enhanced cohesion of photo-oxygenated fullerene films: A new opportunity for lithography. Applied Physics A: Solids and Surfaces, 1993, 57, 299-303.	1.4	35
210	Silicon wafer bonding studied by infrared absorption spectroscopy. Applied Physics Letters, 1994, 65, 2548-2550.	1.5	35
211	Anharmonic adlayer vibrations on the Si(111):H surface. Physical Review B, 1999, 59, 10996-11013.	1.1	35
212	In Situ Infrared Spectroscopic Study of Atomic Layer-Deposited TiO2 Thin Films by Nonaqueous Routes. Chemistry of Materials, 2013, 25, 1706-1712.	3.2	35
213	Atomic Layer Deposition of Silicon Dioxide Using Aminosilanes Di- <i>sec</i> -butylaminosilane and Bis(<i>tert</i> -butylamino)silane with Ozone. Journal of Physical Chemistry C, 2016, 120, 10927-10935.	1.5	35
214	Substrate selectivity in the low temperature atomic layer deposition of cobalt metal films from bis(1,4-di- <i>tert</i> -butyl-1,3-diazadienyl)cobalt and formic acid. Journal of Chemical Physics, 2017, 146, 052813.	1.2	35
215	Selective detection of olefins using a luminescent silver-functionalized metal organic framework, RPM3. Microporous and Mesoporous Materials, 2013, 174, 100-107.	2.2	34
216	Study of van der Waals bonding and interactions in metal organic framework materials. Journal of Physics Condensed Matter, 2014, 26, 133002.	0.7	34

#	Article	IF	CITATIONS
217	Surface electromagnetic wave launching at the edge of a metal film. Applied Physics Letters, 1978, 32, 90-92.	1.5	33
218	Visible to Near-Infrared Sensitization of Silicon SubstratesviaEnergy Transfer from Proximal Nanocrystals: Further Insights for Hybrid Photovoltaics. ACS Nano, 2013, 7, 3236-3245.	7.3	33
219	Difficulty for oxygen to incorporate into the silicon network during initial O2 oxidation of Si(100)-(2×1). Journal of Chemical Physics, 2007, 126, 114707.	1.2	32
220	Spectroscopic characterization of van der Waals interactions in a metal organic framework with unsaturated metal centers: MOF-74–Mg. Journal of Physics Condensed Matter, 2012, 24, 424203.	0.7	32
221	Indium diffusion through high-k dielectrics in high-k/InP stacks. Applied Physics Letters, 2013, 103, .	1.5	32
222	Nature of Hydrophilic Aluminum Fluoride and Oxyaluminum Fluoride Surfaces Resulting from XeF ₂ Treatment of Al and Al ₂ O ₃ . Journal of Physical Chemistry C, 2011, 115, 21351-21357.	1.5	31
223	Surface etching, chemical modification and characterization of silicon nitride and silicon oxide—selective functionalization of Si ₃ N ₄ and SiO ₂ . Journal of Physics Condensed Matter, 2016, 28, 094014.	0.7	31
224	Novel binder-free electrode materials for supercapacitors utilizing high surface area carbon nanofibers derived from immiscible polymer blends of PBI/6FDA-DAM:DABA. RSC Advances, 2017, 7, 20947-20959.	1.7	31
225	Chemical Modification Mechanisms in Hybrid Hafnium Oxo-methacrylate Nanocluster Photoresists for Extreme Ultraviolet Patterning. Chemistry of Materials, 2018, 30, 6192-6206.	3.2	31
226	A Review on Reducing Graphene Oxide for Band Gap Engineering. Journal of Materials Science Research, 2012, 2, .	0.1	30
227	Nature of vicinal laser-annealed Si(111) surfaces. Physical Review B, 1981, 24, 3303-3309.	1.1	29
228	Functionalization of oxide-free silicon surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	29
229	Infrared study of hydrogen chemisorbed on W(100) by surface-electromagnetic-wave spectroscopy. Physical Review B, 1981, 24, 2921-2934.	1.1	28
230	Laser quenched and impurity induced metastable Si(111)1×1 surfaces. Journal of Vacuum Science and Technology, 1982, 20, 763-769.	1.9	26
231	Spectroscopic studies of the mechanism for hydrogen-induced exfoliation of InP. Physical Review B, 2005, 72, .	1.1	26
232	Ethylenediamine Grafting on Oxide-Free H-, 1/3 ML F-, and Cl-Terminated Si(111) Surfaces. Chemistry of Materials, 2015, 27, 6268-6281.	3.2	26
233	Role of Hydrogen Bonding on Transport of Coadsorbed Gases in Metal–Organic Frameworks Materials. Journal of the American Chemical Society, 2018, 140, 856-859.	6.6	26
234	CO diffusion on Pt(111) by timeâ€resolved surface infrared spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 2227-2234.	0.9	25

#	Article	IF	CITATIONS
235	Etching of Silicon (111) and (100) Surfaces in HF Solutions: H-Termination, Atomic Structure and Overall Morphology. Materials Research Society Symposia Proceedings, 1992, 259, 349.	0.1	25
236	Real-time monitoring of surface chemistry during plasma processing. Pure and Applied Chemistry, 1994, 66, 1381-1388.	0.9	25
237	Ammonia pretreatment for high- \hat{I}^{2} dielectric growth on silicon. Applied Physics Letters, 2004, 85, 3830-3832.	1.5	25
238	Water-saturated Si(100)-(2×1): Kinetic Monte Carlo simulations of thermal oxygen incorporation. Journal of Applied Physics, 2001, 90, 6000-6005.	1.1	24
239	In-situ FTIR Study of Atomic Layer Deposition (ALD) of Copper Metal Films. ECS Transactions, 2007, 11, 91-101.	0.3	24
240	One-Step Selective Chemistry for Silicon-on-Insulator Sensor Geometries. Langmuir, 2011, 27, 7337-7340.	1.6	24
241	Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells. Applied Physics Letters, 2012, 100, 021902.	1.5	24
242	Sample manipulator for operation between 20 and 2000 K in ultrahigh vacuum. Review of Scientific Instruments, 1983, 54, 1031-1033.	0.6	23
243	Looking up the down staircase: Surface Raman spectroscopy as a probe of adsorbate orientation. Journal of Electron Spectroscopy and Related Phenomena, 1993, 64-65, 183-191.	0.8	23
244	An infrared study of H8Si8O12 cluster adsorption on Si(100) surfaces. Journal of Chemical Physics, 1998, 108, 8680-8688.	1.2	23
245	pH-dependent structure and energetics of H2O/MgO(100). Surface Science, 2012, 606, 902-907.	0.8	23
246	Diffusion of In0.53Ga0.47As elements through hafnium oxide during post deposition annealing. Applied Physics Letters, 2014, 104, .	1.5	23
247	DNA Grafting and Arrangement on Oxide Surfaces for Self-Assembly of Al and CuO Nanoparticles. Langmuir, 2017, 33, 12193-12203.	1.6	23
248	Oxidation of GaAs(110) withNO2: Infrared spectroscopy. Physical Review B, 1990, 42, 5240-5248.	1.1	22
249	Realâ€ŧime,insitumonitoring of surface reactions during plasma passivation of GaAs. Applied Physics Letters, 1993, 62, 3156-3158.	1.5	22
250	Silicon Oxidation and Ultra-Thin Oxide Formation on Silicon Studied by Infrared Absorption Spectroscopy. Physica Status Solidi A, 1999, 175, 77-88.	1.7	22
251	First-principles approach to rotational-vibrational frequencies and infrared intensity for <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">H<mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mi </mml:msub></mml:mrow><!--</td--><td>ow>^{1,1}mml:</td><td>:math>adsor</td></mml:math>	ow> ^{1,1} mml:	:math>adsor
252	Self-Organized Al ₂ Cu Nanocrystals at the Interface of Aluminum-Based Reactive Nanolaminates to Lower Reaction Onset Temperature. ACS Applied Materials & amp; Interfaces, 2016, 8, 13104-13113.	4.0	22

#	Article	IF	CITATIONS
253	Nanoscale actuation of electrokinetic flows on thermoreversible surfaces. Electrophoresis, 2008, 29, 1245-1252.	1.3	21
254	Comparison of Methods to Bias Fully Depleted SOI-Based MOSFET Nanoribbon pH Sensors. IEEE Transactions on Electron Devices, 2011, 58, 1752-1760.	1.6	21
255	Structure-Driven Photoluminescence Enhancement in a Zn-Based Metal–Organic Framework. Chemistry of Materials, 2019, 31, 7933-7940.	3.2	21
256	Luminescent Metal–Organic Framework for Lithium Harvesting Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 6561-6568.	3.2	21
257	Suppression of substrate oxidation during ozone based atomic layer deposition of Al2O3: Effect of ozone flow rate. Applied Physics Letters, 2010, 97, 162903.	1.5	20
258	Reconstructed Ribbon Edges in Thermally Reduced Graphene Nanoribbons. Journal of Physical Chemistry C, 2012, 116, 24006-24015.	1.5	20
259	Interfacial graphene growth in the Ni/SiO ₂ system using pulsed laser deposition. Applied Physics Letters, 2013, 103, 134102.	1.5	20
260	Controlled Growth and Grafting of High-Density Au Nanoparticles on Zinc Oxide Thin Films by Photo-Deposition. Langmuir, 2018, 34, 1932-1940.	1.6	20
261	Thermal Atomic Layer Etching of Silica and Alumina Thin Films Using Trimethylaluminum with Hydrogen Fluoride or Fluoroform. ACS Applied Materials & Interfaces, 2018, 10, 31784-31794.	4.0	20
262	Transient vibrational mode renormalization in dipoleâ€coupled adsorbates at surfaces. Journal of Chemical Physics, 1994, 100, 6896-6906.	1.2	19
263	Real time in situ monitoring of surfaces during glow discharge processing: NH3 and H2 plasma passivation of GaAs. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1995, 13, 258.	1.6	19
264	Water reaction with chlorine-terminated silicon (111) and (100) surfaces. Applied Physics Letters, 2005, 87, 173118.	1.5	19
265	Formation and Bonding of Alane Clusters on Al(111) Surfaces Studied by Infrared Absorption Spectroscopy and Theoretical Modeling. Journal of the American Chemical Society, 2008, 130, 10576-10587.	6.6	19
266	Performance Enhancement via Incorporation of ZnO Nanolayers in Energetic Al/CuO Multilayers. Langmuir, 2017, 33, 11086-11093.	1.6	19
267	Selective Atomic Layer Deposition Mechanism for Titanium Dioxide Films with (EtCp)Ti(NMe ₂) ₃ : Ozone versus Water. Chemistry of Materials, 2018, 30, 970-981.	3.2	19
268	Vapor-Phase Cleaning and Corrosion Inhibition of Copper Films by Ethanol and Heterocyclic Amines. ACS Applied Materials & Interfaces, 2018, 10, 38610-38620.	4.0	19
269	Si(111): Ni surface studies by AES, UPS, LEED, and ion scattering. Journal of Vacuum Science and Technology, 1981, 18, 880-882.	1.9	18
270	Thermal evolution of impurities in wet chemical silicon oxides. Applied Physics Letters, 1999, 74, 1257-1259.	1.5	18

#	Article	IF	CITATIONS
271	Fundamental steps towards interface amorphization during silicon oxidation: Density functional theory calculations. Physical Review B, 2009, 79, .	1.1	18
272	Film Structure of Epitaxial Graphene Oxide on SiC: Insight on the Relationship Between Interlayer Spacing, Water Content, and Intralayer Structure. Advanced Materials Interfaces, 2014, 1, 1300106.	1.9	18
273	Atomic Layer Deposition of Cobalt Silicide Thin Films Studied by in Situ Infrared Spectroscopy. Chemistry of Materials, 2015, 27, 4943-4949.	3.2	18
274	Role of Initial Precursor Chemisorption on Incubation Delay for Molybdenum Oxide Atomic Layer Deposition. Chemistry of Materials, 2016, 28, 8591-8597.	3.2	18
275	Low-index, smooth Al_2O_3 films by aqueous solution process. Optical Materials Express, 2017, 7, 273.	1.6	18
276	XeF2-induced removal of SiO2 near Si surfaces at 300 K: An unexpected proximity effect Journal of Applied Physics, 2010, 108, 114914.	1.1	17
277	Effect of mobile ions on ultrathin silicon-on-insulator-based sensors. Applied Physics Letters, 2010, 97, •	1.5	17
278	Role of Alumina Coatings for Selective and Controlled Bonding of DNA on Technologically Relevant Oxide Surfaces. Journal of Physical Chemistry C, 2015, 119, 23527-23543.	1.5	17
279	Mechanism of Arsenic Monolayer Doping of Oxide-Free Si(111). Chemistry of Materials, 2016, 28, 1975-1979.	3.2	17
280	Toward Atomic-Scale Patterned Atomic Layer Deposition: Reactions of Al ₂ O ₃ Precursors on a Si(001) Surface with Mixed Functionalizations. Journal of Physical Chemistry C, 2016, 120, 2628-2641.	1.5	17
281	Static and dynamic electronic characterization of organic monolayers grafted on a silicon surface. Physical Chemistry Chemical Physics, 2016, 18, 3675-3684.	1.3	17
282	Summary Abstract: Reconstruction, adsorbate bonding, and desorption kinetics of H/Mo(100). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 791-792.	0.9	16
283	First-Principles Study of the Etching Reactions of HF and H2O with Si/SiO2 Surfaces. Materials Research Society Symposia Proceedings, 1993, 315, 437-446.	0.1	16
284	The microscopic origin of optical phonon evolution during water oxidation of Si(100). Journal of Chemical Physics, 2003, 119, 2307-2313.	1.2	16
285	Thermal stability of amorphous LaScO3 films on silicon. Applied Physics Letters, 2006, 89, 062902.	1.5	16
286	Hydrogen Barrier Layer Against Silicon Oxidation during Atomic Layer Deposition of Al[sub 2]O[sub 3] and HfO[sub 2]. Journal of the Electrochemical Society, 2007, 154, G44.	1.3	16
287	Lowering the density of electronic defects on organic-functionalized Si(100) surfaces. Applied Physics Letters, 2014, 104, .	1.5	16
288	Pattern transfer of hydrogen depassivation lithography patterns into silicon with atomically traceable placement and size control. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, .	0.6	16

#	Article	IF	CITATIONS
289	Surface Oxide Characterization and Interface Evolution in Atomic Layer Deposition of Al ₂ O ₃ on InP(100) Studied by in Situ Infrared Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 5862-5871.	1.5	16
290	Toward Selective Ultra-High-Vacuum Atomic Layer Deposition of Metal Oxides on Si(100). Journal of Physical Chemistry C, 2016, 120, 24213-24223.	1.5	16
291	Superior low-temperature NO catalytic performance of PrMn ₂ O ₅ over SmMn ₂ O ₅ mullite-type catalysts. Catalysis Science and Technology, 2019, 9, 2758-2766.	2.1	16
292	Reactivity of Atomic Layer Deposition Precursors with OH/H2O-Containing Metal Organic Framework Materials. Chemistry of Materials, 2019, 31, 2286-2295.	3.2	16
293	Infrared absorption measurement of the overtone of the wagging mode of hydrogen on W(100). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1986, 4, 1324-1328.	0.9	15
294	Graphitic carbon nitride nano-emitters on silicon: a photoelectrochemical heterojunction composed of earth-abundant materials for enhanced evolution of hydrogen. Journal of Materials Chemistry A, 2014, 2, 12697-12702.	5.2	15
295	Order of magnitude enhancement of monolayer MoS2 photoluminescence due to near-field energy influx from nanocrystal films. Scientific Reports, 2017, 7, 41967.	1.6	15
296	Water Dissociation and Further Hydroxylation of Perfect and Defective Polar ZnO Model Surfaces. Journal of Physical Chemistry C, 2018, 122, 21861-21873.	1.5	15
297	Critical Role of Mullite-type Oxides' Surface Chemistry on Catalytic NO Oxidation Performance. Journal of Physical Chemistry C, 2019, 123, 5385-5393.	1.5	15
298	Summary Abstract: Hydrogen phonon spectra on Pt(111) at T=100 and 160 K. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 816-819.	0.9	14
299	Phase transitions, surface structures, and adsorbate bonding in the H/Mo(100) chemisorption system. Journal of Chemical Physics, 1991, 94, 6274-6295.	1.2	14
300	Wet Chemical Cleaning of Germanium Surfaces for Growth of High-k Dielectrics. Materials Research Society Symposia Proceedings, 2006, 917, 1.	0.1	14
301	Atomic-Layer-Deposited Al2O3 as Gate Dielectrics for Graphene-Based Devices. ECS Transactions, 2009, 19, 225-230.	0.3	14
302	The Structure and Vibrational Spectrum of the Si(111)â^'H/Cl Surface. Journal of Physical Chemistry C, 2009, 113, 21713-21720.	1.5	14
303	Gold Nanoparticles on Oxide-Free Silicon–Molecule Interface for Single Electron Transport. Langmuir, 2013, 29, 5066-5073.	1.6	14
304	Silicon Interfacial Passivation Layer Chemistry for High- <i>k</i> /InP Interfaces. ACS Applied Materials & Interfaces, 2014, 6, 7340-7345.	4.0	14
305	Stoichiometry and structural disorder effects on the electronic structure of Ni and Pd silicides. Physical Review B, 1982, 26, 2748-2758.	1.1	13
306	Truckset al. reply. Physical Review Letters, 1991, 66, 1648-1648.	2.9	13

#	Article	IF	CITATIONS
307	Efficient Directed Energy Transfer through Sizeâ€Gradient Nanocrystal Layers into Silicon Substrates. Advanced Functional Materials, 2014, 24, 5002-5010.	7.8	13
308	Hybrid light sensor based on ultrathin Si nanomembranes sensitized with CdSe/ZnS colloidal nanocrystal quantum dots. Nanoscale, 2015, 7, 8524-8530.	2.8	13
309	Engineering Multilayered Nanocrystal Solids with Enhanced Optical Properties Using Metal Oxides for Photonic Applications. ACS Applied Nano Materials, 2018, 1, 6782-6789.	2.4	13
310	Vibrational Properties at Semiconductor Surfaces and Interfaces. Springer Proceedings in Physics, 1987, , 301-327.	0.1	13
311	Molecular ordering in bis(phenylenyl)bithiophenes. Journal of Materials Chemistry, 2007, 17, 3427.	6.7	12
312	Effects of the Local Environment on Siâ^'H Stretching Frequencies for the Mixed Coverage X/H:Si(111) Surface (X = F, Cl, Br, and I). Journal of Physical Chemistry C, 2010, 114, 17644-17650.	1.5	12
313	Effect of Titanium Doping of Al(111) Surfaces on Alane Formation, Mobility, and Desorption. Journal of Physical Chemistry C, 2011, 115, 16701-16710.	1.5	12
314	Investigation of LiAlH4–THF formation by direct hydrogenation of catalyzed Al and LiH. Physical Chemistry Chemical Physics, 2012, 14, 6569.	1.3	12
315	General Strategy for the Design of DNA Coding Sequences Applied to Nanoparticle Assembly. Langmuir, 2016, 32, 9676-9686.	1.6	12
316	ir study of molecules adsorbed on metal surfaces by surface electromagnetic wave spectroscopy. Journal of Vacuum Science and Technology, 1978, 15, 638-641.	1.9	11
317	Low temperature adsorption and reaction of NO on GaAs(110). Chemical Physics Letters, 1990, 168, 203-207.	1.2	11
318	Infrared Spectroscopy of Covalently Bonded Species on Silicon Surfaces: Deuterium, Chlorine, and Cobalt Tetracarbonyl. Materials Research Society Symposia Proceedings, 1997, 477, 415.	0.1	11
319	Vibrational study of indium phosphide oxides. Surface Science, 2002, 502-503, 75-80.	0.8	11
320	UV-induced immobilization of tethered zirconocenes on H-terminated silicon surfaces. Chemical Communications, 2008, , 1329.	2.2	11
321	Probing the intrinsic electrical properties of thin organic layers/semiconductor interfaces using an atomic-layer-deposited Al ₂ O ₃ protective layer. Applied Physics Letters, 2012, 101, 051605.	1.5	11
322	Effect of Back-Gate Biasing on Floating Electrolytes in Silicon-on-Insulator-Based Nanoribbon Sensors. IEEE Electron Device Letters, 2012, 33, 447-449.	2.2	11
323	Effect of metal/bulk-heterojunction interfacial properties on organic photovoltaic device performance. Journal of Materials Chemistry A, 2014, 2, 15288.	5.2	11
324	Spectroscopic evaluation of out-of-plane surface vibration bands from surface functionalization of graphite oxide by fluorination. Carbon, 2014, 77, 577-591.	5.4	11

#	Article	IF	CITATIONS
325	Yttrium Oxide-Catalyzed Formation of Electrically Conductive Carbon for Supercapacitors. ACS Applied Energy Materials, 2021, 4, 12499-12507.	2.5	11
326	Adsorbateâ^'Surface Phonon Interactions in Deuterium-Passivated Si(111)-(1 × 1). Journal of Physical Chemistry C, 2008, 112, 1034-1039.	1.5	10
327	Modification of the Adhesive Properties of XeF2-Etched Aluminum Surfaces by Deposition of Organic Self-Assembled Monolayers. Journal of Physical Chemistry C, 2010, 114, 22566-22572.	1.5	10
328	Surface Reactions of μ2-η2-(tBu-acetylene)dicobalthexacarbonyl with Oxidized and H-terminated Si(111) Surfaces. Chemistry of Materials, 2011, 23, 2068-2074.	3.2	10
329	Anisotropic Optical Properties of Thin-Film Thiacarbocyanine Dye Aggregates. Journal of Physical Chemistry C, 2013, 117, 20186-20192.	1.5	10
330	Morphology and chemical termination of HF-etched Si3N4 surfaces. Applied Physics Letters, 2014, 105, .	1.5	10
331	Adsorbate Interactions in Metal Organic Frameworks Studied by Vibrational Spectroscopy. Comments on Inorganic Chemistry, 2014, 34, 78-102.	3.0	10
332	Nanopatterning on H-Terminated Si(111) Explained as Dynamic Equilibrium of the Chemical Reaction with Methanol. Journal of Physical Chemistry C, 2015, 119, 16947-16953.	1.5	10
333	Ammonia modification of oxide-free Si(111) surfaces. Surface Science, 2016, 650, 285-294.	0.8	10
334	Cluster assisted water dissociation mechanism in MOF-74 and controlling it using helium. Journal of Materials Chemistry A, 2016, 4, 11524-11530.	5.2	10
335	Oxidative Dehydrogenation of Cyclohexane and Cyclohexene over Y-doped CeO2 Nanorods. Catalysis Letters, 2017, 147, 738-744.	1.4	10
336	Controlling Chemical Reactions in Confined Environments: Water Dissociation in MOF-74. Applied Sciences (Switzerland), 2018, 8, 270.	1.3	10
337	Vibrational energy flow at stepped H/Si(111): phonons, dipoles and screening. Faraday Discussions, 1993, 96, 217.	1.6	9
338	Surface Chemical Composition and Morphology. , 2008, , 523-618.		9
339	In-situ Studies of High-κ Dielectrics for Graphene-Based Device. ECS Transactions, 2009, 19, 215-224.	0.3	9
340	Thermal stability comparison of TaN on HfO2 and Al2O3. Applied Physics Letters, 2010, 96, 151907.	1.5	9
341	Si ₂ H ₆ Dissociative Chemisorption and Dissociation on Si(100)-(2×1) and Ge(100)-(2×1). Journal of Physical Chemistry C, 2011, 115, 24534-24548.	1.5	9
342	Energy transfer from colloidal nanocrystals into Si substrates studied via photoluminescence photon counts and decay kinetics. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2401.	0.9	9

#	Article	IF	CITATIONS
343	In Situ Infrared Absorption Study of Plasma-Enhanced Atomic Layer Deposition of Silicon Nitride. Langmuir, 2018, 34, 2619-2629.	1.6	9
344	Gold Nanoparticles on Functionalized Silicon Substrate under Coulomb Blockade Regime: An Experimental and Theoretical Investigation. Journal of Physical Chemistry B, 2018, 122, 897-903.	1.2	9
345	Integrated Experimental–Theoretical Approach To Determine Reliable Molecular Reaction Mechanisms on Transition-Metal Oxide Surfaces. ACS Applied Materials & Interfaces, 2019, 11, 30460-30469.	4.0	9
346	A triptych photocatalyst based on the Co-Integration of Ag nanoparticles and carbo-benzene dye into a TiO2 thin film. International Journal of Hydrogen Energy, 2019, 44, 26347-26360.	3.8	9
347	Role of Surface Oxygen Vacancies in Intermediate Formation on Mullite-type Oxides upon NO Adsorption. Journal of Physical Chemistry C, 2020, 124, 15913-15919.	1.5	9
348	Vibrational Studies of Ultra-Thin Oxides and Initial Silicon Oxidation. Springer Series in Materials Science, 2001, , 143-159.	0.4	9
349	Alcohol washing as a way to stabilize the anatase phase of nanostructured titania through controlling particle packing. Journal of Materials Science, 2009, 44, 5944-5948.	1.7	8
350	Comparative time-resolved study of the XeF2 etching of Mo and Si. Journal of Applied Physics, 2010, 108, 114913.	1.1	8
351	Controlling the reproducibility of Coulomb blockade phenomena for gold nanoparticles on an organic monolayer/silicon system. Nanotechnology, 2015, 26, 065301.	1.3	8
352	Initial nitride formation during plasma-nitridation of cobalt surfaces. Applied Physics Letters, 2016, 109, .	1.5	8
353	Basic Mechanisms of Al Interaction with the ZnO Surface. Journal of Physical Chemistry C, 2017, 121, 12780-12788.	1.5	8
354	Passivation and Characterization of Germanium Surfaces. , 2007, , 73-113.		8
355	Surface and Interface Chemistry for Gate Stacks on Silicon. Springer Series in Materials Science, 2009, , 113-168.	0.4	8
356	Effects of TaN, Ru, and Pt electrodes on thermal stability of hafnium-based gate stacks. Journal of Applied Physics, 2010, 107, .	1.1	7
357	Chemistry in confined spaces: reactivity of the Zn-MOF-74 channels. Journal of Materials Chemistry A, 2016, 4, 13176-13182.	5.2	7
358	Nonuniform Composition Profiles in Amorphous Multimetal Oxide Thin Films Deposited from Aqueous Solution. ACS Applied Materials & amp; Interfaces, 2017, 9, 37476-37483.	4.0	7
359	Al Interaction with ZnO Surfaces. Journal of Physical Chemistry C, 2018, 122, 17856-17864.	1.5	7
360	Nanocast carbon microsphere flowers from a lanthanum-based template. Materials Letters, 2019, 234, 224-227.	1.3	7

#	Article	IF	CITATIONS
361	Alkylation of Silicon(111) surfaces. European Physical Journal Special Topics, 2006, 132, 195-198.	0.2	7
362	Effective surface passivation methodologies for high performance germanium metal oxide semiconductor field effect transistors. Applied Physics Letters, 2008, 93, 192115.	1.5	6
363	Digermane Deposition on Si(100) and Ge(100): from Adsorption Mechanism to Epitaxial Growth. Journal of Physical Chemistry C, 2014, 118, 482-493.	1.5	6
364	Frustrated Etching during H/Si(111) Methoxylation Produces Fissured Fluorinated Surfaces, Whereas Direct Fluorination Preserves the Atomically Flat Morphology. Journal of Physical Chemistry C, 2015, 119, 26029-26037.	1.5	6
365	Aqueous process to limit hydration of thin-film inorganic oxides. Solid State Sciences, 2016, 61, 106-110.	1.5	6
366	Cobalt and iron segregation and nitride formation from nitrogen plasma treatment of CoFeB surfaces. Journal of Chemical Physics, 2017, 146, 052805.	1.2	6
367	Energy transfer from colloidal nanocrystals to strongly absorbing perovskites. Nanoscale, 2017, 9, 8695-8702.	2.8	6
368	Realâ€ŧime study of selfâ€sustained oscillations in the CO oxidation rate on Pt. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 801-804.	0.9	5
369	Monitoring low-coverage surface chemistry with bulk transport:NO2dissociation and oxygen penetration at a GaAs(110) surface. Physical Review B, 1990, 42, 6865-6868.	1.1	5
370	<i>In Situ</i> Spectroscopic Approach to Atomic Layer Deposition. Materials Research Society Symposia Proceedings, 2002, 745, 241.	0.1	5
371	Mechanistic Studies of Dielectric Growth on Silicon. , 2005, , 367-401.		5
372	Multiscale modeling of interaction of alane clusters on Al(111) surfaces: A reactive force field and infrared absorption spectroscopy approach. Journal of Chemical Physics, 2010, 132, 084509.	1.2	5
373	Towards modelling the vibrational signatures of functionalized surfaces: carboxylic acids on H–Si(111) surfaces. Journal of Physics Condensed Matter, 2012, 24, 124111.	0.7	5
374	Colored porous silicon as support for plasmonic nanoparticles. Journal of Applied Physics, 2012, 111, 084302.	1.1	5
375	Role of Interfacial Aluminum Silicate and Silicon as Barrier Layers for Atomic Layer Deposition of Al ₂ O ₃ Films on Chemically Cleaned InP(100) Surfaces. Journal of Physical Chemistry C, 2014, 118, 29164-29179.	1.5	5
376	Ab Initio Study of H2 Associative Desorption on Ad-Dimer Reconstructed Si(001) and Ge(001)-(2×1) Surfaces. Journal of Physical Chemistry C, 2014, 118, 10088-10096.	1.5	5
377	Controlled Deposition and Spectroscopic Signatures of Ordered Multilayer Nanocrystal Assemblies for Optoelectronic Applications. Advanced Optical Materials, 2016, 4, 378-383.	3.6	5
378	Applications of Infrared Absorption Spectroscopy to the Microelectronic Industry. European Physical Journal Special Topics, 1997, 07, C6-3-C6-17.	0.2	5

#	Article	IF	CITATIONS
379	Silicon Surface Chemistry By IR Spectroscopy in the Mid- To Far-IR Region: H ₂ O And Ethanol On Si(100). Materials Research Society Symposia Proceedings, 1995, 386, 395.	0.1	4
380	Generation and Capture of CO ₂ and CO in Graphite Oxide Stacks during Thermal Reduction. Materials Research Society Symposia Proceedings, 2009, 1205, 10501.	0.1	4
381	FTIR study of copper agglomeration during atomic layer deposition of copper. Materials Research Society Symposia Proceedings, 2009, 1155, 1.	0.1	4
382	Reaction Mechanisms of the Atomic Layer Deposition of Tin Oxide Thin Films Using Tributyltin Ethoxide and Ozone. Langmuir, 2017, 33, 5998-6004.	1.6	4
383	Role of Trimethylaluminum in Low Temperature Atomic Layer Deposition of Silicon Nitride. Chemistry of Materials, 2017, 29, 6022-6029.	3.2	4
384	Selective Growth of Interface Layers from Reactions of Sc(MeCp)2(Me2pz) with Oxide Substrates. ACS Applied Materials & Interfaces, 2018, 10, 32818-32827.	4.0	4
385	Nanoimaging of Organic Charge Retention Effects: Implications for Nonvolatile Memory, Neuromorphic Computing, and High Dielectric Breakdown Devices. ACS Applied Nano Materials, 2019, 2, 4711-4716.	2.4	4
386	Mechanistic study of the atomic layer deposition of scandium oxide films using Sc(MeCp)2(Me2pz) and ozone. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	4
387	High-Resolution Infrared Study of Hydrogen (1×1) on Tungsten (100). Physical Review Letters, 1980, 44, 1094-1094.	2.9	3
388	Wet chemical cleaning of plasma oxide grown on heated (001) InP surfaces. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 1885.	1.6	3
389	Characterization of Ru thin-film conductivity upon atomic layer deposition on H-passivated Si(111). Journal of Applied Physics, 2012, 112, .	1.1	3
390	Single Charge Electronics with Gold Nanoparticles and Organic Monolayers. Materials Research Society Symposia Proceedings, 2016, 1817, 1.	0.1	3
391	Deposition of Iron on Si(111)-(7×7): Photo- and Electron-Assisted Decomposition of Fe(CO)5. Materials Research Society Symposia Proceedings, 1986, 75, 559.	0.1	2
392	Infrared Spectroscopy of Si(111) and Si(100) Surfaces After HF Treatment: Hydrogen Termination and Surface Morphology. Materials Research Society Symposia Proceedings, 1988, 131, 191.	0.1	2
393	In situ infrared absorption spectroscopy for thin film growth by atomic layer deposition. , 2006, , .		2
394	Materials Science of Graphene for Novel Device Applications. ECS Transactions, 2009, 19, 185-199.	0.3	2
395	Atomic Layer Deposition of Ruthenium Films on Hydrogen terminated Silicon. Materials Research Society Symposia Proceedings, 2009, 1156, 1.	0.1	2
396	Infrared analysis of biomolecule attachment to functionalized silicon surfaces. , 2011, , 83-113.		2

#	Article	IF	CITATIONS
397	Atomically Traceable Nanostructure Fabrication. Journal of Visualized Experiments, 2015, , e52900.	0.2	2
398	Biexciton and trion energy transfer from CdSe/CdS giant nanocrystals to Si substrates. Nanoscale, 2017, 9, 19398-19407.	2.8	2
399	Understanding Thermal Evolution and Monolayer Doping of Sulfur-Passivated GaAs(100). Journal of Physical Chemistry C, 2018, 122, 8414-8422.	1.5	2
400	Reorganization of a photosensitive carbo-benzene layer in a triptych nanocatalyst with enhancement of the photocatalytic hydrogen production from water. International Journal of Hydrogen Energy, 2020, 45, 24765-24778.	3.8	2
401	Infrared Spectroscopy of Semiconductor Surfaces. Springer Series in Surface Sciences, 1988, , 109-150.	0.3	2
402	Laser-Assisted Deposition of Fe and W: Photodecomposition of Fe(CO)5, and W(CO)6 on Si(111)-(7×7). Materials Research Society Symposia Proceedings, 1987, 101, 201.	0.1	1
403	Structure And Kinetics Of Molecules At Surfaces. Proceedings of SPIE, 1989, 1145, 34.	0.8	1
404	Mechanistic Studies of Wafer Bonding and Thin Silicon Film Exfoliation. Materials Research Society Symposia Proceedings, 1999, 587, O4.4.1.	0.1	1
405	Ion backscattering study of ultra-thin oxides: Al2O3 and AlHfOx films on Si. Nuclear Instruments & Methods in Physics Research B, 2005, 241, 377-381.	0.6	1
406	Effects of fluid media on ultra-thin SOI based pH sensors. , 2009, , .		1
407	Attachment Of Streptavidin-Biotin On 3-Aminopropyltriethoxysilane (APTES) Modified Porous Silicon Surfaces. , 2009, , .		1
408	Impact of back-gate biasing on ultra-thin silicon-on-insulator-based nanoribbon sensors. , 2010, , .		1
409	Raman Spectroscopy for Probing guest-host interactions in Metal Organic Frameworks. Materials Research Society Symposia Proceedings, 2011, 1334, 60601.	0.1	1
410	Examining the interlayer interactions formed between reduced graphene oxide and ionic liquids. MRS Communications, 2013, 3, 67-71.	0.8	1
411	Atomic Mechanism of Arsenic Monolayer Doping on oxide-free Silicon(111). MRS Advances, 2016, 1, 2345-2353.	0.5	1
412	Surface Chemical Composition and Morphology. , 2018, , 505-577.		1
413	Electrical and Structural Characterization of the Interface of Wafer Bonded InP/Si. Materials Research Society Symposia Proceedings, 2003, 763, 281.	0.1	1
414	Lifetime of an Adsorbate Substrate Vibration: H on Si(111). Springer Series in Chemical Physics, 1990, , 374-376.	0.2	1

#	Article	IF	CITATIONS
415	Size, Shape, and Crystallinity of Luminescent Structures in Oxidized Si Nanoclusters and H-Passivated Porous Si. Materials Research Society Symposia Proceedings, 1994, 358, 407.	0.1	0
416	X-Ray Absorption Spectroscopy from H-Passivated Porous Si and Oxidized Si Nanocrystals. Materials Research Society Symposia Proceedings, 1994, 375, 113.	0.1	0
417	Electrical and Structural Characterization of the Interface of Wafer Bonded InP/Si. Materials Research Society Symposia Proceedings, 2003, 768, 241.	0.1	0
418	Structural Characterization of a Functionalized Organic Semiconductor. Materials Research Society Symposia Proceedings, 2005, 871, 1.	0.1	0
419	Microspotting: Film Structure of Epitaxial Graphene Oxide on SiC: Insight on the Relationship Between Interlayer Spacing, Water Content, and Intralayer Structure (Adv. Mater. Interfaces 3/2014). Advanced Materials Interfaces, 2014, 1, n/a-n/a.	1.9	0
420	Chemical bonding and stability of multilayer graphene oxide layers. , 2014, , .		0
421	Biphenyl-bridged wrinkled mesoporous silica nanoparticles for radioactive iodine capture. MRS Advances, 2019, 4, 435-439.	0.5	0
422	High-Resolution Infrared Spectroscopy and Surface Structure. Springer Series in Surface Sciences, 1985, , 70-76.	0.3	0
423	High resolution photoemission spectroscopy of flat and stepped non reconstructed H/Si(111) surfaces. European Physical Journal Special Topics, 1994, 04, C9-89-C9-95.	0.2	0
424	Adsorption Sites, Bonding Configurations, Reactions and Mass Transport Surface. Springer Handbooks, 2020, , 853-902.	0.3	0
425	IR SPECTROSCOPY WITH SURFACE ELECTROMAGNETIC WAVES. Journal De Physique Colloque, 1984, 45,	0.2	0