
Francesco Donsi'

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5474570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT - Food Science and Technology, 2011, 44, 1908-1914.	2.5	635
2	Essential oil nanoemulsions as antimicrobial agents in food. Journal of Biotechnology, 2016, 233, 106-120.	1.9	450
3	Design of nanoemulsion-based delivery systems of natural antimicrobials: Effect of the emulsifier. Journal of Biotechnology, 2012, 159, 342-350.	1.9	356
4	Applications of Pulsed Electric Field Treatments for the Enhancement of Mass Transfer from Vegetable Tissue. Food Engineering Reviews, 2010, 2, 109-130.	3.1	274
5	Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems. Food Chemistry, 2014, 147, 42-50.	4.2	245
6	Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli O157:H7 and Salmonella Typhimurium on green beans. Food Control, 2015, 50, 215-222.	2.8	226
7	Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds. Marine Drugs, 2016, 14, 214.	2.2	215
8	Proteinâ€Based Delivery Systems for the Nanoencapsulation of Food Ingredients. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 920-936.	5.9	178
9	Evaluation of the Stability and Antioxidant Activity of Nanoencapsulated Resveratrol during in Vitro Digestion. Journal of Agricultural and Food Chemistry, 2011, 59, 12352-12360.	2.4	171
10	Physicochemical and bioactive properties of six honey samples from various floral origins from Tunisia. Arabian Journal of Chemistry, 2018, 11, 265-274.	2.3	143
11	Effect of pulsed electric fields and high pressure homogenization on the aqueous extraction of intracellular compounds from the microalgae Chlorella vulgaris. Algal Research, 2018, 31, 60-69.	2.4	142
12	Innovative technologies for encapsulation of Mediterranean plants extracts. Trends in Food Science and Technology, 2017, 69, 1-12.	7.8	133
13	Encapsulation of bioactive compounds in nanoemulsion- based delivery systems. Procedia Food Science, 2011, 1, 1666-1671.	0.6	117
14	Main factors regulating microbial inactivation by high-pressure homogenization: Operating parameters and scale of operation. Chemical Engineering Science, 2009, 64, 520-532.	1.9	115
15	Development of Novel Pea Protein-Based Nanoemulsions for Delivery of Nutraceuticals. Journal of Agricultural and Food Chemistry, 2010, 58, 10653-10660.	2.4	108
16	Green beans preservation by combination of a modified chitosan based-coating containing nanoemulsion of mandarin essential oil with high pressure or pulsed light processing. Postharvest Biology and Technology, 2015, 106, 21-32.	2.9	108
17	Effect of Emulsifier Type and Disruption Chamber Geometry on the Fabrication of Food Nanoemulsions by High Pressure Homogenization. Industrial & Engineering Chemistry Research, 2012, 51, 7606-7618.	1.8	101
18	Antibacterial and physical effects of modified chitosan based-coating containing nanoemulsion of mandarin essential oil and three non-thermal treatments against Listeria innocua in green beans. International Journal of Food Microbiology, 2014, 191, 82-88.	2.1	100

#	Article	IF	CITATIONS
19	Zein-based colloidal particles for encapsulation and delivery of epigallocatechin gallate. Food Hydrocolloids, 2017, 63, 508-517.	5.6	97
20	Preparation of Curcumin Sub-micrometer Dispersions by High-Pressure Homogenization. Journal of Agricultural and Food Chemistry, 2010, 58, 2848-2853.	2.4	93
21	Infusion of essential oils for food stabilization: Unraveling the role of nanoemulsion-based delivery systems on mass transfer and antimicrobial activity. Innovative Food Science and Emerging Technologies, 2014, 22, 212-220.	2.7	87
22	Application of a multi-pass high-pressure homogenization treatment for the pasteurization of fruit juices. Journal of Food Engineering, 2011, 104, 364-372.	2.7	85
23	Nanoencapsulation systems to improve solubility and antioxidant efficiency of a grape marc extract into hazelnut paste. Journal of Food Engineering, 2013, 114, 207-214.	2.7	85
24	Chemical composition and functional properties of gum exudates from the trunk of the almond tree (<i>Prunus dulcis</i>). Food Science and Technology International, 2012, 18, 241-250.	1.1	76
25	Assessment of emulsifying ability of almond gum in comparison with gum arabic using response surface methodology. Food Hydrocolloids, 2014, 37, 49-59.	5.6	72
26	Microbial inactivation by high pressure homogenization: Effect of the disruption valve geometry. Journal of Food Engineering, 2013, 115, 362-370.	2.7	70
27	Evaluating the behaviour of curcumin nanoemulsions and multilayer nanoemulsions during dynamic in vitro digestion. Journal of Functional Foods, 2018, 48, 605-613.	1.6	70
28	Influence of emulsifier type on the antifungal activity of cinnamon leaf, lemon and bergamot oil nanoemulsions against Aspergillus niger. Food Control, 2017, 73, 784-795.	2.8	69
29	Pulsed Electric Field-Assisted Vinification of Aglianico and Piedirosso Grapes. Journal of Agricultural and Food Chemistry, 2010, 58, 11606-11615.	2.4	68
30	Antimicrobial effects of different combined non-thermal treatments against Listeria monocytogenes in broccoli florets. Journal of Food Engineering, 2014, 124, 1-10.	2.7	68
31	Freeze–thaw stability of lecithin and modified starch-based nanoemulsions. Food Hydrocolloids, 2011, 25, 1327-1336.	5.6	67
32	Improved extractability of carotenoids from tomato peels as side benefits of PEF treatment of tomato fruit for more energy-efficient steam-assisted peeling. Journal of Food Engineering, 2018, 233, 65-73.	2.7	67
33	Emerging Green Techniques for the Extraction of Antioxidants from Agri-Food By-Products as Promising Ingredients for the Food Industry. Antioxidants, 2021, 10, 1417.	2.2	66
34	High-pressure homogenization treatment to recover bioactive compounds from tomato peels. Journal of Food Engineering, 2019, 262, 170-180.	2.7	63
35	Decontamination of fresh-cut cucumber slices by a combination of a modified chitosan coating containing carvacrol nanoemulsions and pulsed light. International Journal of Food Microbiology, 2017, 260, 75-80.	2.1	59
36	Sources, stability, encapsulation and application of natural pigments in foods. Food Reviews International, 2022, 38, 1735-1790.	4.3	57

#	Article	IF	CITATIONS
37	Food-Grade Colloidal Systems for the Delivery of Essential Oils. Food Reviews International, 2021, 37, 1-45.	4.3	56
38	Edible Coatings Containing Oregano Essential Oil Nanoemulsion for Improving Postharvest Quality and Shelf Life of Tomatoes. Foods, 2020, 9, 1605.	1.9	53
39	Understanding the effect of formulation on functionality of modified chitosan films containing carvacrol nanoemulsions. Food Hydrocolloids, 2016, 61, 756-771.	5.6	51
40	A Multistep Surface Mechanism for Ethane Oxidative Dehydrogenation on Pt- and Pt/Sn-Coated Monoliths. Industrial & Engineering Chemistry Research, 2005, 44, 3453-3470.	1.8	50
41	Oxidative Dehydrogenation of Ethane over a Perovskite-Based Monolithic Reactor. Journal of Catalysis, 2002, 209, 51-61.	3.1	47
42	Exploitation of Polyphenolic Extracts from Grape Marc as Natural Antioxidants by Encapsulation in Lipid-Based Nanodelivery Systems. Food and Bioprocess Technology, 2013, 6, 2609-2620.	2.6	46
43	Production of Shelf-Stable Annurca Apple Juice with Pulp by High Pressure Homogenization. International Journal of Food Engineering, 2009, 5, .	0.7	41
44	Effect of pulsed electric fields – assisted extraction on anti-inflammatory and cytotoxic activity of brown rice bioactive compounds. Food Research International, 2016, 87, 115-124.	2.9	40
45	Experimental Measurements and Thermodynamic Modeling of CO ₂ Solubility at High Pressure in Model Apple Juices. Industrial & Engineering Chemistry Research, 2010, 49, 2992-3000.	1.8	39
46	Pulsed Electric Fields-Assisted Extraction of Valuable Compounds From Arthrospira Platensis: Effect of Pulse Polarity and Mild Heating. Frontiers in Bioengineering and Biotechnology, 2020, 8, 551272.	2.0	36
47	Effect of formulation on properties, stability, carvacrol release and antimicrobial activity of carvacrol emulsions. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111424.	2.5	35
48	Bergamot essential oil nanoemulsions: antimicrobial and cytotoxic activity. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2020, 75, 279-290.	0.6	35
49	Pulsed Electric Fields – assisted vinification. Procedia Food Science, 2011, 1, 780-785.	0.6	33
50	Nutritional composition of <i>Zizyphus lotus</i> L. seeds. Journal of the Science of Food and Agriculture, 2012, 92, 1171-1177.	1.7	33
51	Formulation and characterization of zein/gum arabic nanoparticles for the encapsulation of a rutin-rich extract from Ruta chalepensis L. Food Chemistry, 2022, 367, 129982.	4.2	33
52	Submicron complex lipid carriers for curcumin delivery to intestinal epithelial cells: Effect of different emulsifiers on bioaccessibility and cell uptake. International Journal of Pharmaceutics, 2015, 494, 357-369.	2.6	32
53	Three Pillars of Novel Nonthermal Food Technologies: Food Safety, Quality, and Environment. Journal of Food Quality, 2018, 2018, 1-18.	1.4	30
54	Functionalization of pasta through the incorporation of bioactive compounds from agri-food by-products: Fundamentals, opportunities, and drawbacks. Trends in Food Science and Technology, 2022, 122, 49-65.	7.8	30

#	Article	IF	CITATIONS
55	Influence of high-pressure homogenization on structural properties and enzymatic hydrolysis of milk proteins. LWT - Food Science and Technology, 2020, 130, 109657.	2.5	29
56	Applications of Nanoemulsions in Foods. , 2018, , 349-377.		25
57	The Use of Nanocellulose in Edible Coatings for the Preservation of Perishable Fruits and Vegetables. Coatings, 2021, 11, 990.	1.2	25
58	The effect of support morphology on the reaction of oxidative dehydrogenation of ethane to ethylene at short contact times. Catalysis Today, 2005, 105, 551-559.	2.2	24
59	Olefins production by catalytic partial oxidation of ethane and propane over Pt/LaMnO3 catalyst. Catalysis Today, 2010, 157, 310-314.	2.2	24
60	Physicochemical, Rheological, and Thermal Properties of Six Types of Honey from Various Floral Origins in Tunisia. International Journal of Food Properties, 2015, 18, 2624-2637.	1.3	24
61	Novel approaches to oil structuring via the addition of high-pressure homogenized agri-food residues and water forming capillary bridges. Journal of Food Engineering, 2018, 236, 9-18.	2.7	24
62	Edible Coating and Pulsed Light to Increase the Shelf Life of Food Products. Food Engineering Reviews, 2021, 13, 544-569.	3.1	24
63	Autothermal Oxidative Dehydrogenation of Ethane on LaMnO3- and Pt-Based Monoliths:  H2 and CO Addition. Industrial & Engineering Chemistry Research, 2005, 44, 285-295.	1.8	21
64	Influence of interfacial structure on physical stability and antioxidant activity of curcumin multilayer emulsions. Food and Bioproducts Processing, 2020, 121, 65-75.	1.8	20
65	Crossing the breakthrough line of ethylene production by short contact time catalytic partial oxidation. Catalysis Today, 2005, 106, 72-76.	2.2	19
66	Optimization of Ethylene Production via Catalytic Partial Oxidation of Ethane on Pt–LaMnO3 Catalyst. Catalysis Letters, 2008, 122, 228-237.	1.4	19
67	High-Pressure Homogenization for Food Sanitization. , 2009, , 309-352.		18
68	Understanding the break-up phenomena in an orifice-valve high pressure homogenizer using spherical bacterial cells (Lactococcus lactis) as a model disruption indicator. Journal of Food Engineering, 2018, 236, 60-71.	2.7	18
69	Catalyst investigation for applications of oxidative dehydrogenation of ethane in short contact time reactors. Catalysis Today, 2004, 91-92, 285-288.	2.2	17
70	A Comparative Study on Physicochemical, Rheological and Surface Tension Properties of Tunisian Jujube (Zizyphus lotus L.) Seed and Vegetable Oils. International Journal of Food Engineering, 2012, 8, .	0.7	17
71	High-pressure homogenization-assisted extraction of bioactive compounds from Ruta chalepensis. Journal of Food Measurement and Characterization, 2020, 14, 2800-2809.	1.6	16
72	Extraction improvement of water-soluble compounds from Arthrospira platensis through the combination of high-shear homogenization and pulsed electric fields. Algal Research, 2021, 57, 102341.	2.4	15

3

#	Article	IF	CITATIONS
73	Cellulose Isolation from Tomato Pomace Pretreated by High-Pressure Homogenization. Foods, 2022, 11, 266.	1.9	15
74	Modeling ethane oxy-dehydrogenation over monolithic combustion catalysts. AICHE Journal, 2004, 50, 2233-2245.	1.8	14
75	Impact of Novel Nonthermal Processing on Food Quality: Sustainability, Modelling, and Negative Aspects. Journal of Food Quality, 2019, 2019, 1-2.	1.4	14
76	O/W Pickering Emulsions Stabilized with Cellulose Nanofibrils Produced through Different Mechanical Treatments. Foods, 2021, 10, 1886.	1.9	14
77	Nonthermal Processing Technologies for Stabilization and Enhancement of Bioactive Compounds in Foods. Food Engineering Reviews, 2022, 14, 63-99.	3.1	14
78	Transport phenomena in a catalytic monolith: Effect of the superficial reaction. AICHE Journal, 2006, 52, 911-923.	1.8	13
79	Mechanical cell disruption of mustard bran suspensions for improved dispersion properties and protein release. Food and Function, 2020, 11, 6273-6284.	2.1	13
80	Application of Pulsed Electric Fields and High-Pressure Homogenization in Biorefinery Cascade of C. vulgaris Microalgae. Foods, 2022, 11, 471.	1.9	13
81	Optimization of the Extraction Process by Response Surface Methodology of Protein Isolate from Defatted Jujube (Zizyphus lotus L.) Seeds. International Journal of Peptide Research and Therapeutics, 2019, 25, 1509-1521.	0.9	12
82	Mass Transfer Enhancement by Means of Electroporation. , 2011, , .		10
83	Development and Characterization of Lipid-Based Nanosystems: Effect of Interfacial Composition on Nanoemulsion Behavior. Food and Bioprocess Technology, 2020, 13, 67-87.	2.6	10
84	Physicochemical Characteristics and Antioxidant Activities of <i>Zizyphus lotus</i> â€L. Seed Oil. Journal of Food Biochemistry, 2013, 37, 554-563.	1.2	7
85	Changing the Vision in Smart Food Design Utilizing the Next Generation of Nanometric Delivery Systems for Bioactive Compounds. Foods, 2020, 9, 1100.	1.9	7
86	Lycopeneâ€rich cream obtained via highâ€pressure homogenisation of tomato processing residues in a water–oil mixture. International Journal of Food Science and Technology, 0, , .	1.3	7
87	Nanoencapsulation of Thyme Essential Oils: Formulation, Characterization, Storage Stability, and Biological Activity. Foods, 2022, 11, 1858.	1.9	7
88	Effect of the Re number on heat and mass transport in a catalytic monolith. Catalysis Today, 2006, 117, 498-505.	2.2	6
89	Heat and mass fluxes in the presence of fast exothermic superficial reaction. Combustion Theory and Modelling, 2005, 9, 463-477.	1.0	5

90 Nanoemulsion-Based Delivery Systems. , 2015, , 79-94.

#	Article	IF	CITATIONS
91	Rheological and interfacial properties at the equilibrium of almond gum tree exudate (Prunus dulcis) in comparison with gum arabic. Food Science and Technology International, 2016, 22, 277-287.	1.1	3
92	Encapsulation of Bioactive Compounds. , 2019, , 405-439.		3
93	Encapsulation of food ingredients by single O/W and W/O nanoemulsions. , 2019, , 37-87.		2
94	Production of food bioactive-loaded nanostructures by high-pressure homogenization. , 2019, , 251-340.		2
95	CFD Simulation of Heat Transfer in a Circular Channel: Effect of the Pe Number. International Journal of Chemical Reactor Engineering, 2005, 3, .	0.6	1
96	Emerging technologies for the clean recovery of antioxidants from microalgae. , 2021, , 173-205.		1
97	A Technology Platform For the Sustainable Recovery and Advanced Use of Nanostructured Cellulose from Agri-Food Residues (PANACEA Project). , 2020, 69, .		Ο