Martina H Stenzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5474566/publications.pdf

Version: 2024-02-01

390 papers

23,816 citations

82 h-index 128 g-index

406 all docs

406 docs citations

406 times ranked 18448 citing authors

#	Article	IF	CITATIONS
1	Efficient Synthesis and Wetting Characteristics of Amphiphilic Galactose–PLA Block Copolymers: A Potential Additive for the Accelerated Biodegradation of Micro―and Nanoplastics. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	2
2	Enabling peristalsis of human colon tumor organoids on microfluidic chips. Biofabrication, 2022, 14, 015006.	3.7	27
3	Progress of albumin-polymer conjugates as efficient drug carriers. Pure and Applied Chemistry, 2022, 94, 983-997.	0.9	1
4	Rapid Online Analysis of Photopolymerization Kinetics and Molecular Weight Using Diffusion NMR. ACS Macro Letters, 2022, $11,166$ -172.	2.3	13
5	Development of an Albumin–Polymer Bioconjugate via Covalent Conjugation and Supramolecular Interactions. Bioconjugate Chemistry, 2022, 33, 321-332.	1.8	1
6	Trehalose coated nanocellulose to inhibit the infections by <i>S. aureus</i> . Polymer Chemistry, 2022, 13, 1502-1509.	1.9	6
7	Structurally analogous trehalose and sucrose glycopolymers – comparative characterization and evaluation of their effects on insulin fibrillation. Polymer Chemistry, 2022, 13, 1831-1843.	1.9	6
8	Fusion of Cellulose and Multicomponent Reactions: Benign by Design. ACS Sustainable Chemistry and Engineering, 2022, 10, 4359-4373.	3.2	11
9	A High Throughput Approach for Designing Polymers That Mimic the TRAIL Protein. Nano Letters, 2022,	4.5	6
10	Polymer Grafting to Polydopamine Free Radicals for Universal Surface Functionalization. Journal of the American Chemical Society, 2022, 144, 6992-7000.	6.6	28
11	Controlling the Biological Behaviors of Polymer-Coated Upconverting Nanoparticles by Adjusting the Linker Length of Estrone Ligands. Biomacromolecules, 2022, 23, 2572-2585.	2.6	5
12	Sugar-induced self-assembly of curcumin-based polydopamine nanocapsules with high loading capacity for dual drug delivery. Nanoscale, 2022, 14, 9448-9458.	2.8	3
13	Glycopolymers for Drug Delivery: Opportunities and Challenges. Macromolecules, 2022, 55, 4867-4890.	2.2	28
14	PET-RAFT Enables Efficient and Automated Multiblock Star Synthesis. Macromolecules, 2022, 55, 5938-5945.	2.2	10
15	The Trojan Horse Goes Wild: The Effect of Drug Loading on the Behavior of Nanoparticles. Angewandte Chemie, 2021, 133, 2230-2234.	1.6	3
16	The Trojan Horse Goes Wild: The Effect of Drug Loading on the Behavior of Nanoparticles. Angewandte Chemie - International Edition, 2021, 60, 2202-2206.	7.2	32
17	Enhancing Cationic Drug Delivery with Polymeric Carriers: The Coulombâ€pH Switch Approach. Advanced Theory and Simulations, 2021, 4, 2000247.	1.3	1
18	Bioactive engineered photothermal nanomaterials: from theoretical understanding to cutting-edge application strategies in anti-cancer therapy. Materials Chemistry Frontiers, 2021, 5, 5257-5297.	3.2	18

#	Article	IF	CITATIONS
19	Self-assembled anionic and cationic Au nanoparticles with Au nanoclusters for the exploration of different biological responsiveness in cancer therapy. Nanoscale Advances, 2021, 3, 2812-2821.	2.2	9
20	3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications. Journal of Materials Chemistry B, 2021, 9, 6163-6175.	2.9	31
21	Quantitatively Monitoring <i>In Situ</i> Mitochondrial Thermal Dynamics by Upconversion Nanoparticles. Nano Letters, 2021, 21, 1651-1658.	4.5	60
22	Optimizing the Polymer Cloak for Upconverting Nanoparticles: An Evaluation of Bioactivity and Optical Performance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 16142-16154.	4.0	15
23	The Protein Corona Leads to Deformation of Spherical Micelles. Angewandte Chemie, 2021, 133, 10430-10437.	1.6	1
24	The Protein Corona Leads to Deformation of Spherical Micelles. Angewandte Chemie - International Edition, 2021, 60, 10342-10349.	7.2	17
25	Stable and Highly Efficient Antibody–Nanoparticles Conjugation. Bioconjugate Chemistry, 2021, 32, 1146-1155.	1.8	13
26	Saturation Transfer Difference NMR Spectroscopy for the Elucidation of Supramolecular Albumin–Polymer Interactions. ACS Macro Letters, 2021, 10, 819-824.	2.3	5
27	Manipulating endogenous exosome biodistribution for therapy. SmartMat, 2021, 2, 127-130.	6.4	17
28	Regulating the uptake of poly(N-(2-hydroxypropyl) methacrylamide)-based micelles in cells cultured on micropatterned surfaces. Biointerphases, 2021, 16, 041002.	0.6	2
29	Polymer-Functionalized Upconversion Nanoparticles for Light/Imaging-Guided Drug Delivery. Biomacromolecules, 2021, 22, 3168-3201.	2.6	51
30	Corona-Loading Strategies for Crystalline Particles Made by Living Crystallization-Driven Self-Assembly. Macromolecules, 2021, 54, 6662-6669.	2.2	38
31	From mouse to mouseâ€ear cress: Nanomaterials as vehicles in plant biotechnology. Exploration, 2021, 1, 9-20.	5.4	27
32	Effect of cell culture media on photopolymerizations. Biomacromolecules, 2021, 22, 4295-4305.	2.6	5
33	Post-functionalization of drug-loaded nanoparticles prepared by polymerization-induced self-assembly (PISA) with mitochondria targeting ligands. Beilstein Journal of Organic Chemistry, 2021, 17, 2302-2314.	1.3	5
34	Inhibition of <i>S.â€aureus</i> Infection of Human Umbilical Vein Endothelial Cells (HUVECs) by Trehalose―and Glucoseâ€Functionalized Gold Nanoparticles. Angewandte Chemie - International Edition, 2021, 60, 22652-22658.	7.2	11
35	Inhibition of S. aureus Infection of Human Umbilical Vein Endothelial Cells (HUVECs) by Trehalose―and Glucoseâ€Functionalized Gold Nanoparticles. Angewandte Chemie, 2021, 133, 22834.	1.6	1
36	Shining light on transition metal sulfides: New choices as highly efficient antibacterial agents. Nano Research, 2021, 14, 2512-2534.	5.8	49

3

#	Article	IF	CITATIONS
37	An organotypic model of high-grade serous ovarian cancer to test the anti-metastatic potential of ROR2 targeted Polyion complex nanoparticles. Journal of Materials Chemistry B, 2021, 9, 9123-9135.	2.9	11
38	The Core–Shell Structure, Not Sugar, Drives the Thermal Stabilization of Single-Enzyme Nanoparticles. Biomacromolecules, 2021, 22, 4569-4581.	2.6	10
39	Gold Nanorods (AuNRs) and Zeolitic Imidazolate Framework-8 (ZIF-8) Core–Shell Nanostructure-Based Electrochemical Sensor for Detecting Neurotransmitters. ACS Omega, 2021, 6, 33149-33158.	1.6	12
40	Surface engineering and applications of nanodiamonds in cancer treatment and imaging. International Materials Reviews, 2020, 65, 189-225.	9.4	28
41	Photoâ€Induced Modification of Nanocellulose: The Design of Selfâ€Fluorescent Drug Carriers. Macromolecular Rapid Communications, 2020, 41, e1900499.	2.0	23
42	Concepts, fabrication methods and applications of living crystallization-driven self-assembly of block copolymers. Progress in Polymer Science, 2020, 101, 101195.	11.8	116
43	Cellular Uptake of Gold Nanoparticles and Their Movement in 3D Multicellular Tumor Spheroids: Effect of Molecular Weight and Grafting Density of Poly(2â€hydroxyl ethyl acrylate). Macromolecular Bioscience, 2020, 20, e1900221.	2.1	19
44	Experimental cum computational investigation on interfacial and mechanical behavior of short glass fiber reinforced dental composites. Composites Part B: Engineering, 2020, 200, 108294.	5.9	33
45	Perfusion Cultivation of Artificial Liver Extracellular Matrix in Fibrous Polymer Sponges Biomimicking Scaffolds for Tissue Engineering. Biomacromolecules, 2020, 21, 4094-4104.	2.6	6
46	Visible Lightâ€"Responsive Drug Delivery Nanoparticle via Donorâ€"Acceptor Stenhouse Adducts (DASA). Macromolecular Rapid Communications, 2020, 41, e2000236.	2.0	41
47	Hybrid engineered dental composites by multiscale reinforcements with chitosan-integrated halloysite nanotubes and S-glass fibers. Composites Part B: Engineering, 2020, 202, 108448.	5.9	19
48	3D printed nanocomposites using polymer grafted graphene oxide prepared by multicomponent Passerini reaction. Polymer Chemistry, 2020, 11, 7253-7263.	1.9	6
49	Modulating the Selectivity and Stealth Properties of Ellipsoidal Polymersomes through a Multivalent Peptide Ligand Display. Advanced Healthcare Materials, 2020, 9, e2000261.	3.9	11
50	Substituent Effects on Photoinitiation Ability of Monoaminoanthraquinoneâ€Based Photoinitiating Systems for Free Radical Photopolymerization under LEDs. Macromolecular Rapid Communications, 2020, 41, e2000166.	2.0	11
51	Vesicular Polymer Hexosomes Exhibit Topological Defects. Journal of the American Chemical Society, 2020, 142, 10989-10995.	6.6	24
52	Drug-Directed Morphology Changes in Polymerization-Induced Self-Assembly (PISA) Influence the Biological Behavior of Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2020, 12, 30221-30233.	4.0	34
53	Polyion Complex-Templated Synthesis of Cross-Linked Single-Enzyme Nanoparticles. Macromolecules, 2020, 53, 5487-5496.	2.2	12
54	Polyion Complex Micelles for Protein Delivery Benefit from Flexible Hydrophobic Spacers in the Binding Group. Macromolecular Rapid Communications, 2020, 41, e2000208.	2.0	15

#	Article	IF	CITATIONS
55	Cancer Spheroids: Superâ€Resolution Mapping of Single Nanoparticles inside Tumor Spheroids (Small) Tj ETQq1 1	0.784314 5.2	1 rgBT /Ove
56	Surface modified cellulose nanomaterials: a source of non-spherical nanoparticles for drug delivery. Materials Horizons, 2020, 7, 1727-1758.	6.4	80
57	Estrone-Decorated Polyion Complex Micelles for Targeted Melittin Delivery to Hormone-Responsive Breast Cancer Cells. Biomacromolecules, 2020, 21, 1222-1233.	2.6	34
58	Superâ∈Resolution Mapping of Single Nanoparticles inside Tumor Spheroids. Small, 2020, 16, e1905572.	5.2	32
59	Direct Comparison of Poly(ethylene glycol) and Phosphorylcholine Drug-Loaded Nanoparticles In Vitro and In Vivo. Biomacromolecules, 2020, 21, 2320-2333.	2.6	14
60	Crosslinking of Self-Assembled Protein–Polymer Conjugates with Divanillin. Australian Journal of Chemistry, 2020, , .	0.5	2
61	Influence of Surface Treatment on the Interfacial and Mechanical Properties of Short S-Glass Fiber-Reinforced Dental Composites. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32328-32338.	4.0	31
62	Recent advances in ultra-small fluorescent Au nanoclusters toward oncological research. Nanoscale, 2019, 11, 17967-17980.	2.8	55
63	Polymorphic Transformation of Drugs Induced by Glycopolymeric Vesicles Designed for Anticancer Therapy Probed by Solid-State NMR Spectroscopy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 28278-28288.	4.0	17
64	Correlation between polymer architecture and polyion complex micelle stability with proteins in spheroid cancer models as seen by light-sheet microscopy. Polymer Chemistry, 2019, 10, 1221-1230.	1.9	9
65	A new 3D organotypic model of ovarian cancer to help evaluate the antimetastatic activity of RAPTA-C conjugated micelles. Biomaterials Science, 2019, 7, 1652-1660.	2.6	26
66	Faceted polymersomes: a sphere-to-polyhedron shape transformation. Chemical Science, 2019, 10, 2725-2731.	3.7	29
67	Photoinitiation Mechanism and Ability of Monoaminoâ€Substituted Anthraquinone Derivatives as Cationic Photoinitiators of Polymerization under LEDs. Macromolecular Rapid Communications, 2019, 40, e1900234.	2.0	28
68	Non-spherical polymersomes: formation and characterization. Chemical Society Reviews, 2019, 48, 4019-4035.	18.7	61
69	Poly(4â€vinyl imidazole): A pHâ€Responsive Trigger for Hierarchical Selfâ€Assembly of Multicompartment Micelles Based upon Triblock Terpolymers. Macromolecular Chemistry and Physics, 2019, 220, 1900131.	1.1	14
70	The effect of cationic groups on the stability of 19 F MRI contrast agents in nanoparticles. Journal of Polymer Science Part A, 2019, 57, 1994-2001.	2.5	8
71	Amphiphilic polymer coated nanodiamonds: a promising platform to deliver azonafide. Polymer Chemistry, 2019, 10, 1904-1911.	1.9	7
72	Bioactive Patchy Nanoparticles with Compartmentalized Cargoes for Simultaneous and Trackable Delivery. Angewandte Chemie - International Edition, 2019, 58, 7335-7340.	7.2	25

#	Article	IF	CITATIONS
73	Bioactive Patchy Nanoparticles with Compartmentalized Cargoes for Simultaneous and Trackable Delivery. Angewandte Chemie, 2019, 131, 7413-7418.	1.6	6
74	Selective Atomic-Level Etching on Short S-Glass Fibres to Control Interfacial Properties for Restorative Dental Composites. Scientific Reports, 2019, 9, 3851.	1.6	16
75	Efficient Photoinitiating System Based on Diaminoanthraquinone for 3D Printing of Polymer/Carbon Nanotube Nanocomposites under Visible Light. ACS Applied Polymer Materials, 2019, 1, 1129-1135.	2.0	30
76	Just add sugar forÂcarbohydrate induced self-assembly of curcumin. Nature Communications, 2019, 10, 582.	5.8	57
77	Correlation between Drug Loading Content and Biological Activity: The Complexity Demonstrated in Paclitaxel-Loaded Glycopolymer Micelle System. Biomacromolecules, 2019, 20, 1545-1554.	2.6	53
78	Surface roughness influences the protein corona formation of glycosylated nanoparticles and alter their cellular uptake. Nanoscale, 2019, 11, 23259-23267.	2.8	66
79	Comparing photoswitching of acrylate or methacrylate polymers conjugated with donor–acceptor Stenhouse adducts. Polymer Chemistry, 2019, 10, 6515-6522.	1.9	29
80	Glucose Single-Chain Polymer Nanoparticles for Cellular Targeting. ACS Macro Letters, 2019, 8, 95-101.	2.3	44
81	Length of the Stabilizing Zwitterionic Poly(2-methacryloyloxyethyl phosphorycholine) Block Influences the Activity of the Conjugated Arsenic Drug in Drug-Directed Polymerization-Induced Self-Assembly Particles. ACS Macro Letters, 2019, 8, 57-63.	2.3	17
82	All Wrapped up: Stabilization of Enzymes within Single Enzyme Nanoparticles. Journal of the American Chemical Society, 2019, 141, 2754-2769.	6.6	157
83	Importance of Polymer Length in Fructose-Based Polymeric Micelles for an Enhanced Biological Activity. Macromolecules, 2019, 52, 477-486.	2.2	23
84	Effect of polyethylene glycol (PEG) molecular weight and nanofillers on the properties of banana pseudostem nanocellulose films. Carbohydrate Polymers, 2019, 205, 330-339.	5.1	46
85	Sugar Concentration and Arrangement on the Surface of Glycopolymer Micelles Affect the Interaction with Cancer Cells. Biomacromolecules, 2019, 20, 273-284.	2.6	27
86	Multihydroxyâ€Anthraquinone Derivatives as Free Radical and Cationic Photoinitiators of Various Photopolymerizations under Green LED. Macromolecular Rapid Communications, 2018, 39, e1800172.	2.0	28
87	Multicellular Tumor Spheroids (MCTS) as a 3D In Vitro Evaluation Tool of Nanoparticles. Small, 2018, 14, e1702858.	5.2	158
88	Spatially resolved coding of î»-orthogonal hydrogels by laser lithography. Chemical Communications, 2018, 54, 2436-2439.	2.2	24
89	Microcapsule synthesis via RAFT photopolymerization in vegetable Oil as a green solvent. Journal of Polymer Science Part A, 2018, 56, 831-839.	2.5	11
90	Direct Polymerization of the Arsenic Drug PENAO to Obtain Nanoparticles with High Thiol-Reactivity and Anti-Cancer Efficiency. Bioconjugate Chemistry, 2018, 29, 546-558.	1.8	16

#	Article	IF	CITATIONS
91	Entry of nanoparticles into cells: the importance of nanoparticle properties. Polymer Chemistry, 2018, 9, 259-272.	1.9	294
92	Delivery of Amonafide from Fructose-Coated Nanodiamonds by Oxime Ligation for the Treatment of Human Breast Cancer. Biomacromolecules, 2018, 19, 481-489.	2.6	42
93	Polymeric Nanocapsules for Enzyme Stabilization in Organic Solvents. Macromolecules, 2018, 51, 438-446.	2.2	35
94	Covalent Tethering of Temperature Responsive pNIPAm onto TEMPO-Oxidized Cellulose Nanofibrils via Three-Component Passerini Reaction. ACS Macro Letters, 2018, 7, 412-418.	2.3	36
95	Nanoparticles for dendritic cell-based immunotherapy. International Journal of Pharmaceutics, 2018, 542, 253-265.	2.6	61
96	Effect of glycerol, nanoclay and graphene oxide on physicochemical properties of biodegradable nanocellulose plastic sourced from banana pseudo-stem. Cellulose, 2018, 25, 399-416.	2.4	31
97	Light-sheet microscopy as a tool to understanding the behaviour of Polyion complex micelles for drug delivery. Chemical Communications, 2018, 54, 12618-12621.	2.2	21
98	Disubstituted Aminoanthraquinone-Based Photoinitiators for Free Radical Polymerization and Fast 3D Printing under Visible Light. Macromolecules, 2018, 51, 10104-10112.	2.2	38
99	Disubstituted Aminoanthraquinone-Based Multicolor Photoinitiators: Photoinitiation Mechanism and Ability of Cationic Polymerization under Blue, Green, Yellow, and Red LEDs. Macromolecules, 2018, 51, 8165-8173.	2.2	31
100	Polyion Complex Micelles for Protein Delivery. Australian Journal of Chemistry, 2018, 71, 768.	0.5	37
101	Safety of nanoparticles based on albumin–polymer conjugates as a carrier of nucleotides for pancreatic cancer therapy. Journal of Materials Chemistry B, 2018, 6, 6278-6287.	2.9	20
102	Length <i>vs.</i> stiffness: which plays a dominant role in the cellular uptake of fructose-based rod-like micelles by breast cancer cells in 2D and 3D cell culture models?. Journal of Materials Chemistry B, 2018, 6, 4223-4231.	2.9	40
103	Drug-Induced Morphology Transition of Self-Assembled Glycopolymers: Insight into the Drug–Polymer Interaction. Chemistry of Materials, 2018, 30, 5227-5236.	3.2	44
104	Compartmentalized nanoparticles in aqueous solution through hierarchical self-assembly of triblock glycopolymers. Polymer Chemistry, 2018, 9, 4132-4142.	1.9	26
105	Direct light-induced (co-)grafting of photoactive polymers to graphitic nanodiamonds. Polymer Chemistry, 2017, 8, 838-842.	1.9	6
106	(â^³)-Riboflavin (vitamin B2) and flavin mononucleotide as visible light photo initiators in the thiol–ene polymerisation of PEG-based hydrogels. Polymer Chemistry, 2017, 8, 980-984.	1.9	53
107	Enhanced Antimetastatic Activity of the Ruthenium Anticancer Drug RAPTA Delivered in Fructoseâ€Coated Micelles. Macromolecular Bioscience, 2017, 17, 1600513.	2.1	27
108	Influencing Selectivity to Cancer Cells with Mixed Nanoparticles Prepared from Albumin–Polymer Conjugates and Block Copolymers. Bioconjugate Chemistry, 2017, 28, 979-985.	1.8	41

#	Article	IF	CITATIONS
109	Cationic glycopolymers through controlled polymerisation of a glucosamine-based monomer mimicking the behaviour of chitosan. Polymer Chemistry, 2017, 8, 1750-1753.	1.9	4
110	Influence of nanoparticle shapes on cellular uptake of paclitaxel loaded nanoparticles in 2D and 3D cancer models. Polymer Chemistry, 2017, 8, 3317-3326.	1.9	68
111	Synthesis of polydopamine capsules via SPG membrane emulsion templating: Tuning of capsule size. Journal of Polymer Science Part A, 2017, 55, 365-370.	2.5	7
112	The Effect of Drug Loading on Micelle Properties: Solidâ€State NMR as a Tool to Gain Structural Insight. Angewandte Chemie, 2017, 129, 8561-8565.	1.6	23
113	The Effect of Drug Loading on Micelle Properties: Solidâ€State NMR as a Tool to Gain Structural Insight. Angewandte Chemie - International Edition, 2017, 56, 8441-8445.	7.2	50
114	Swollen Micelles for the Preparation of Gated, Squeezable, pH-Responsive Drug Carriers. ACS Applied Materials & Drug Carriers & Drug	4.0	35
115	Two-Dimensional Self-Assembled Structures of Highly Ordered Bioactive Crystalline-Based Block Copolymers. Macromolecules, 2017, 50, 8544-8553.	2.2	66
116	Fluorescent Glyco Single-Chain Nanoparticle-Decorated Nanodiamonds. ACS Macro Letters, 2017, 6, 1168-1174.	2.3	30
117	Formation of non-spherical polymersomes driven by hydrophobic directional aromatic perylene interactions. Nature Communications, 2017, 8, 1240.	5.8	76
118	Controlled poly(olefin)s via decarboxylation of poly(acrylic acid). Polymer Chemistry, 2017, 8, 6636-6643.	1.9	19
119	Drug induced self-assembly of triblock copolymers into polymersomes for the synergistic dual-drug delivery of platinum drugs and paclitaxel. Polymer Chemistry, 2017, 8, 6289-6299.	1.9	18
120	Binding and Release between Polymeric Carrier and Protein Drug: pH-Mediated Interplay of Coulomb Forces, Hydrogen Bonding, van der Waals Interactions, and Entropy. Biomacromolecules, 2017, 18, 3665-3677.	2.6	15
121	Polypeptide-Grafted Nanodiamonds for Controlled Release of Melittin to Treat Breast Cancer. ACS Macro Letters, 2017, 6, 796-801.	2.3	18
122	Penetration and drug delivery of albumin nanoparticles into pancreatic multicellular tumor spheroids. Journal of Materials Chemistry B, 2017, 5, 9591-9599.	2.9	24
123	Characteristics of a free-standing film from banana pseudostem nanocellulose generated from TEMPO-mediated oxidation. Carbohydrate Polymers, 2017, 174, 1156-1163.	5.1	50
124	Light-induced release of molecules from polymers. Progress in Polymer Science, 2017, 74, 1-33.	11.8	95
125	Dynamic covalent single chain nanoparticles based on hetero Diels–Alder chemistry. Chemical Communications, 2017, 53, 157-160.	2.2	27
126	Frontispiz: Bottom-Up Fabrication of Nanopatterned Polymers on DNA Origami by Inâ€Situ Atom-Transfer Radical Polymerization. Angewandte Chemie, 2016, 128, .	1.6	0

#	Article	IF	CITATIONS
127	Bottomâ€Up Fabrication of Nanopatterned Polymers on DNA Origami by Inâ€Situ Atomâ€Transfer Radical Polymerization. Angewandte Chemie - International Edition, 2016, 55, 5692-5697.	7.2	64
128	Bottomâ€Up Fabrication of Nanopatterned Polymers on DNA Origami by Inâ€Situ Atomâ€Transfer Radical Polymerization. Angewandte Chemie, 2016, 128, 5786-5791.	1.6	29
129	Combinatorial Lowâ€Volume Synthesis of Wellâ€Defined Polymers by Enzyme Degassing. Angewandte Chemie - International Edition, 2016, 55, 4500-4503.	7.2	117
130	Drug-loading of poly(ethylene glycol methyl ether methacrylate) (PEGMEMA)â€"based micelles and mechanisms of uptake in colon carcinoma cells. Colloids and Surfaces B: Biointerfaces, 2016, 144, 257-264.	2.5	16
131	Development and Applications of Transesterification Reactions Catalyzed by N-Heterocyclic Olefins. Organic Letters, 2016, 18, 2208-2211.	2.4	65
132	Direct Correlation Between Zeta Potential and Cellular Uptake of Poly(methacrylic acid) Postâ€Modified with Guanidinium Functionalities. Macromolecular Chemistry and Physics, 2016, 217, 2302-2309.	1.1	27
133	Stabilization of Paclitaxel-Conjugated Micelles by Cross-Linking with Cystamine Compromises the Antitumor Effects against Two- and Three-Dimensional Tumor Cellular Models. Molecular Pharmaceutics, 2016, 13, 3648-3656.	2.3	19
134	The living dead $\hat{a} \in \text{``common misconceptions about reversible deactivation radical polymerization.}$ Materials Horizons, 2016, 3, 471-477.	6.4	58
135	Nanocellulose characteristics from the inner and outer layer of banana pseudo-stem prepared by TEMPO-mediated oxidation. Cellulose, 2016, 23, 3023-3037.	2.4	49
136	pH-Triggered release of gemcitabine from polymer coated nanodiamonds fabricated by RAFT polymerization and copper free click chemistry. Polymer Chemistry, 2016, 7, 6220-6230.	1.9	23
137	Drug Delivery Vehicles Based on Albumin–Polymer Conjugates. Macromolecular Bioscience, 2016, 16, 791-802.	2.1	52
138	Fructose-Coated Nanodiamonds: Promising Platforms for Treatment of Human Breast Cancer. Biomacromolecules, 2016, 17, 2946-2955.	2.6	47
139	Dihydroxyanthraquinone derivatives: natural dyes as blue-light-sensitive versatile photoinitiators of photopolymerization. Polymer Chemistry, 2016, 7, 7316-7324.	1.9	74
140	Profluorescent PPV-Based Micellar System as a Versatile Probe for Bioimaging and Drug Delivery. Biomacromolecules, 2016, 17, 4086-4094.	2.6	28
141	Synthesis of microcapsules using inverse emulsion periphery RAFT polymerization via SPG membrane emulsification. Polymer Chemistry, 2016, 7, 7047-7051.	1.9	7
142	PEG Graftedâ€Nanodiamonds for the Delivery of Gemcitabine. Macromolecular Rapid Communications, 2016, 37, 2023-2029.	2.0	26
143	Frontispiece: Bottom-Up Fabrication of Nanopatterned Polymers on DNA Origami by Inâ€Situ Atom-Transfer Radical Polymerization. Angewandte Chemie - International Edition, 2016, 55, .	7.2	0
144	Cellular Uptake and Movement in 2D and 3D Multicellular Breast Cancer Models of Fructose-Based Cylindrical Micelles That Is Dependent on the Rod Length. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16622-16630.	4.0	72

#	Article	IF	CITATIONS
145	Biodegradable Glycopolymeric Micelles Obtained by RAFT-controlled Radical Ring-Opening Polymerization. Macromolecules, 2016, 49, 4136-4146.	2.2	50
146	Combinatorial Lowâ€Volume Synthesis of Wellâ€Defined Polymers by Enzyme Degassing. Angewandte Chemie, 2016, 128, 4576-4579.	1.6	58
147	Curcumin-Loading-Dependent Stability of PEGMEMA-Based Micelles Affects Endocytosis and Exocytosis in Colon Carcinoma Cells. Molecular Pharmaceutics, 2016, 13, 924-932.	2.3	44
148	Modulating the cellular uptake of platinum drugs with glycopolymers. Polymer Chemistry, 2016, 7, 1031-1036.	1.9	31
149	Nanoparticle-siRNA: A potential cancer therapy?. Critical Reviews in Oncology/Hematology, 2016, 98, 159-169.	2.0	130
150	Polymer Functional Nanodiamonds by Light-Induced Ligation. Macromolecules, 2016, 49, 1712-1721.	2.2	21
151	The dual-role of Pt(<scp>iv</scp>) complexes as active drug and crosslinker for micelles based on β-cyclodextrin grafted polymer. Journal of Materials Chemistry B, 2016, 4, 2114-2123.	2.9	19
152	PEGylated Albumin-Based Polyion Complex Micelles for Protein Delivery. Biomacromolecules, 2016, 17, 808-817.	2.6	59
153	Albumin–polymer conjugate nanoparticles and their interactions with prostate cancer cells in 2D and 3D culture: comparison between PMMA and PCL. Journal of Materials Chemistry B, 2016, 4, 2017-2027.	2.9	36
154	Anti-metastatic effects of RAPTA-C conjugated polymeric micelles on two-dimensional (2D) breast tumor cells and three-dimensional (3D) multicellular tumor spheroids. Acta Biomaterialia, 2016, 32, 68-76.	4.1	18
155	Dual-Responsive pH and Temperature Sensitive Nanoparticles Based on Methacrylic Acid and Di(ethylene glycol) Methyl Ether Methacrylate for the Triggered Release of Drugs. Macromolecular Bioscience, 2015, 15, 1091-1104.	2.1	20
156	<i>N</i> â€Vinylcarbazole as Versatile Photoinaddimer of Photopolymerization under Household UV LED Bulb (392 nm). Macromolecular Rapid Communications, 2015, 36, 1675-1680.	2.0	37
157	SAXS Analysis of Shell Formation During Nanocapsule Synthesis via Inverse Miniemulsion Periphery RAFT Polymerization. Macromolecular Rapid Communications, 2015, 36, 1267-1271.	2.0	9
158	A new role of curcumin: as a multicolor photoinitiator for polymer fabrication under household UV to red LED bulbs. Polymer Chemistry, 2015, 6, 5053-5061.	1.9	95
159	Albumin nanoparticles increase the anticancer efficacy of albendazole in ovarian cancer xenograft model. Journal of Nanobiotechnology, 2015, 13, 25.	4.2	86
160	Light-responsive azobenzene-based glycopolymer micelles for targeted drug delivery to melanoma cells. European Polymer Journal, 2015, 69, 616-627.	2.6	51
161	In Vivo Evaluation of Folate Decorated Cross-Linked Micelles for the Delivery of Platinum Anticancer Drugs. Biomacromolecules, 2015, 16, 515-523.	2.6	52
162	Correlation between Molecular Weight and Branch Structure of Glycopolymers Stars and Their Binding to Lectins. Macromolecules, 2015, 48, 346-357.	2.2	48

#	Article	IF	CITATIONS
163	Incorporating ruthenium into advanced drug delivery carriers–Âan innovative generation of chemotherapeutics. Journal of Chemical Technology and Biotechnology, 2015, 90, 1177-1195.	1.6	48
164	Glycopolymer Self-Assemblies with Gold(I) Complexed to the Core as a Delivery System for Auranofin. Macromolecules, 2015, 48, 1065-1076.	2.2	17
165	Polymersomes Prepared from Thermoresponsive Fluorescent Protein–Polymer Bioconjugates: Capture of and Report on Drug and Protein Payloads. Angewandte Chemie - International Edition, 2015, 54, 5317-5322.	7.2	93
166	Origami with ABC Triblock Terpolymers Based on Glycopolymers: Creation of Virus-Like Morphologies. ACS Macro Letters, 2015, 4, 579-583.	2.3	65
167	Carbohydrate-Specific Uptake of Fucosylated Polymeric Micelles by Different Cancer Cell Lines. Biomacromolecules, 2015, 16, 1948-1957.	2.6	31
168	Biocompatible Glycopolymer Nanocapsules via Inverse Miniemulsion Periphery RAFT Polymerization for the Delivery of Gemcitabine. Biomacromolecules, 2015, 16, 2144-2156.	2.6	53
169	An Oligonucleotide Transfection Vector Based on HSA and PDMAEMA Conjugation: Effect of Polymer Molecular Weight on Cell Proliferation and on Multicellular Tumor Spheroids. Macromolecular Bioscience, 2015, 15, 965-978.	2.1	15
170	Core-Cross-Linking Accelerates Antitumor Activities of Paclitaxel–Conjugate Micelles to Prostate Multicellular Tumor Spheroids: A Comparison of 2D and 3D Models. Biomacromolecules, 2015, 16, 1470-1479.	2.6	62
171	Polymer-Albumin Conjugate for the Facilitated Delivery of Macromolecular Platinum Drugs. Macromolecular Rapid Communications, 2015, 36, 890-897.	2.0	32
172	Worm-Like Micelles and Vesicles: Adjusting the Morphology of Self-Assembled Fructose Based Block Copolymers by Fine-Tuning the Processing Parameters. ACS Symposium Series, 2015, , 91-105.	0.5	1
173	Controlling the morphology of glyco-nanoparticles in water using block copolymer mixtures: the effect on cellular uptake. Polymer Chemistry, 2015, 6, 7812-7820.	1.9	17
174	Copolymerization of an indazole ligand into the self-polymerization of dopamine for enhanced binding with metal ions. Journal of Materials Chemistry B, 2015, 3, 7457-7465.	2.9	30
175	RAFT inverse miniemulsion periphery polymerization in binary solvent mixtures for synthesis of nanocapsules. European Polymer Journal, 2015, 73, 324-334.	2.6	15
176	Enhanced transcellular penetration and drug delivery by crosslinked polymeric micelles into pancreatic multicellular tumor spheroids. Biomaterials Science, 2015, 3, 1085-1095.	2.6	88
177	Dual-drug delivery of curcumin and platinum drugs in polymeric micelles enhances the synergistic effects: a double act for the treatment of multidrug-resistant cancer. Biomaterials Science, 2015, 3, 163-174.	2.6	129
178	Albendazole loaded albumin nanoparticles for ovarian cancer therapy. European Journal of Nanomedicine, 2014, 6, .	0.6	16
179	Control of Glycopolymer Nanoparticle Morphology by a Oneâ€Pot, Double Modification Procedure Using Thiolactones. Macromolecular Rapid Communications, 2014, 35, 1128-1134.	2.0	40
180	Drug Carriers for the Delivery of Therapeutic Peptides. Biomacromolecules, 2014, 15, 1097-1114.	2.6	161

#	Article	IF	Citations
181	Albumin-micelles via a one-pot technology platform for the delivery of drugs. Chemical Communications, 2014, 50, 6394.	2.2	44
182	Fructose-coated nanoparticles: a promising drug nanocarrier for triple-negative breast cancer therapy. Chemical Communications, 2014, 50, 15928-15931.	2.2	66
183	Enhanced drug toxicity by conjugation of platinum drugs to polymers with guanidine containing zwitterionic functional groups that mimic cell-penetrating peptides. Polymer Chemistry, 2014, 5, 6600-6610.	1.9	15
184	Boronic acid ester with dopamine as a tool for bioconjugation and for visualization of cell apoptosis. Chemical Communications, 2014, 50, 6390-6393.	2.2	26
185	Disulfide bridge based conjugation of peptides to RAFT polymers. Polymer Chemistry, 2014, 5, 1772-1781.	1.9	4
186	Drug Conjugation to Cyclic Peptide–Polymer Selfâ€Assembling Nanotubes. Chemistry - A European Journal, 2014, 20, 12745-12749.	1.7	44
187	Synthesis of pH-Responsive Nanocapsules via Inverse Miniemulsion Periphery RAFT Polymerization and Post-Polymerization Reaction. ACS Macro Letters, 2014, 3, 935-939.	2.3	37
188	Polyion Complex Micelle Based on Albumin–Polymer Conjugates: Multifunctional Oligonucleotide Transfection Vectors for Anticancer Chemotherapeutics. Biomacromolecules, 2014, 15, 4195-4205.	2.6	43
189	Superior Chemotherapeutic Benefits from the Ruthenium-Based Anti-Metastatic Drug NAMI-A through Conjugation to Polymeric Micelles. Macromolecules, 2014, 47, 1646-1655.	2.2	40
190	Size effects of self-assembled block copolymer spherical micelles and vesicles on cellular uptake in human colon carcinoma cells. Journal of Materials Chemistry B, 2014, 2, 2883-2891.	2.9	33
191	Polymers with platinum drugs and other macromolecular metal complexes for cancer treatment. Progress in Polymer Science, 2014, 39, 1614-1643.	11.8	97
192	Radio-opaque Micelles for X-ray Imaging. Australian Journal of Chemistry, 2014, 67, 78.	0.5	8
193	Macromolecular platinum-drugs based on statistical and block copolymer structures and their DNA binding ability. Polymer Chemistry, 2013, 4, 5542.	1.9	16
194	Effect of shell-crosslinking of micelles on endocytosis and exocytosis: acceleration of exocytosis by crosslinking. Biomaterials Science, 2013, 1, 265-275.	2.6	43
195	Bioconjugation Using Thiols: Old Chemistry Rediscovered to Connect Polymers with Nature's Building Blocks. ACS Macro Letters, 2013, 2, 14-18.	2.3	152
196	Acid-degradable polymers for drug delivery: a decade of innovation. Chemical Communications, 2013, 49, 2082.	2.2	352
197	Inverse Miniemulsion Periphery RAFT Polymerization: A Convenient Route to Hollow Polymeric Nanoparticles with an Aqueous Core. Macromolecules, 2013, 46, 2118-2127.	2.2	59
198	A polyion complex micelle with heparin for growth factor delivery and uptake into cells. Journal of Materials Chemistry B, 2013, 1, 1635.	2.9	22

#	Article	IF	CITATIONS
199	Folate Conjugation to Polymeric Micelles via Boronic Acid Ester to Deliver Platinum Drugs to Ovarian Cancer Cell Lines. Biomacromolecules, 2013, 14, 962-975.	2.6	101
200	Nanodiamonds with Surface Grafted Polymer Chains as Vehicles for Cell Imaging and Cisplatin Delivery: Enhancement of Cell Toxicity by POEGMEMA Coating. ACS Macro Letters, 2013, 2, 246-250.	2.3	45
201	Synthesis of pH-responsive and thiol-degradable hollow microspheres. Polymer, 2013, 54, 1010-1017.	1.8	16
202	Encapsulation of low molecular weight heparin (bemiparin) into polymeric nanoparticles obtained from cationic block copolymers: properties and cell activity. Journal of Materials Chemistry B, 2013, 1, 850-860.	2.9	22
203	Enhanced Delivery of the RAPTA-C Macromolecular Chemotherapeutic by Conjugation to Degradable Polymeric Micelles. Biomacromolecules, 2013, 14, 4177-4188.	2.6	41
204	Photo-Sensitive RAFT-Agents for Advanced Microparticle Design. Macromolecules, 2013, 46, 6858-6872.	2.2	37
205	Development of Core-Crosslinked Micelles for Drug Delivery System. Advanced Materials Research, 2012, 486, 449-454.	0.3	1
206	Drug Delivery Systems for Platinum Drugs. , 2012, , 201-241.		4
207	One-Pot Endgroup-Modification of Hydrophobic RAFT Polymers with Cyclodextrin by Thiol-ene Chemistry and the Subsequent Formation of Dynamic Core–Shell Nanoparticles Using Supramolecular Host–Guest Chemistry. Australian Journal of Chemistry, 2012, 65, 1095.	0.5	27
208	Host–guest driven supramolecular assembly of reversible comb-shaped polymers in aqueous solution. Polymer Chemistry, 2012, 3, 377-383.	1.9	53
209	Block Copolymer Micelles with Pendant Bifunctional Chelator for Platinum Drugs: Effect of Spacer Length on the Viability of Tumor Cells. Biomacromolecules, 2012, 13, 1010-1023.	2.6	70
210	Zwitterionic Guanidine-Based Oligomers Mimicking Cell-Penetrating Peptides as a Nontoxic Alternative to Cationic Polymers to Enhance the Cellular Uptake of Micelles. Biomacromolecules, 2012, 13, 3418-3426.	2.6	58
211	Shell Crossâ€linking of Cyclodextrinâ€Based Micelles via Supramolecular Chemistry for the Delivery of Drugs. Macromolecular Rapid Communications, 2012, 33, 1868-1874.	2.0	28
212	Honeycomb structured polymer films via breath figures. Polymer Chemistry, 2012, 3, 563-577.	1.9	233
213	Synthesis of hollow polymeric nanoparticles for protein delivery via inverse miniemulsion periphery RAFT polymerization. Chemical Communications, 2012, 48, 11103.	2.2	49
214	Comparison of Shell-Cross-Linked Micelles with Soft and Glassy Cores as a Drug Delivery Vehicle for Albendazole: Is There a Difference in Performance?. Macromolecules, 2012, 45, 5451-5462.	2.2	32
215	pH-Triggered Release of Platinum Drugs Conjugated to Micelles via an Acid-Cleavable Linker. Macromolecules, 2012, 45, 6989-6999.	2.2	71
216	Acid Degradable Cross-Linked Micelles for the Delivery of Cisplatin: A Comparison with Nondegradable Cross-Linker. Chemistry of Materials, 2012, 24, 3197-3211.	3.2	52

#	Article	IF	CITATIONS
217	Effect of Cross-Linking on the Performance of Micelles As Drug Delivery Carriers: A Cell Uptake Study. Biomacromolecules, 2012, 13, 814-825.	2.6	74
218	Macromolecular ruthenium complexes as anti-cancer agents. Polymer Chemistry, 2012, 3, 2964.	1.9	32
219	RAFT polymerization of vinyl methacrylate and subsequent conjugation via enzymatic thiolâ€ene chemistry. Journal of Polymer Science Part A, 2012, 50, 4085-4093.	2.5	16
220	Micelles based on gold-glycopolymer complexes as new chemotherapy drug delivery agents. Chemical Communications, 2012, 48, 4695.	2.2	60
221	Complex polymer architectures via RAFT polymerization: From fundamental process to extending the scope using click chemistry and nature's building blocks. Progress in Polymer Science, 2012, 37, 38-105.	11.8	424
222	Triggering the fast release of drugs from crosslinked micelles in an acidic environment. Journal of Materials Chemistry, 2011, 21, 12777.	6.7	39
223	Polymeric Micelles with Pendant Dicarboxylato Chelating Ligands Prepared via a Michael Addition for <i>ci>cis</i> -Platinum Drug Delivery. Macromolecules, 2011, 44, 7888-7900.	2.2	65
224	Development of Micellar Novel Drug Carrier Utilizing Temperature-Sensitive Block Copolymers Containing Cyclodextrin Moieties. Macromolecules, 2011, 44, 8433-8445.	2.2	60
225	The use of reversible addition fragmentation chain transfer polymerization for drug delivery systems. Expert Opinion on Drug Delivery, 2011, 8, 237-269.	2.4	33
226	Synthetic Route Effect on Macromolecular Architecture: From Block to Gradient Copolymers Based on Acryloyl Galactose Monomer Using RAFT Polymerization. Macromolecules, 2011, 44, 5911-5919.	2.2	61
227	Thiol–yne and Thiol–ene "Click―Chemistry as a Tool for a Variety of Platinum Drug Delivery Carriers, from Statistical Copolymers to Crosslinked Micelles. Biomacromolecules, 2011, 12, 1738-1751.	2.6	123
228	Synthesis of thermo-responsive glycopolymers via copper catalysed azide–alkyne â€~click' chemistry for inhibition of ricin: the effect of spacer between polymer backbone and galactose. Polymer Chemistry, 2011, 2, 1879.	1.9	53
229	Nitrone-mediated radical coupling reactions: a new synthetic tool exemplified on dendrimer synthesis. Chemical Communications, 2011, 47, 5491-5493.	2.2	27
230	Analysis of Thiol-sensitive Core-cross-linked Polymeric Micelles Carrying Nucleoside Pendant Groups using 'On-line' Methods: Effect of Hydrophobicity on Cross-linking and Degradation. Australian Journal of Chemistry, 2011, 64, 766.	0.5	5
231	Functionalization of microspheres with malonates using Michael Addition as a pathway to create a drug delivery system for platinum drugs for the treatment of liver cancer. Polymer, 2011, 52, 5993-6002.	1.8	10
232	Building nanostructures using RAFT polymerization. Journal of Polymer Science Part A, 2011, 49, 551-595.	2.5	294
233	Embedding multiple siteâ€specific functionalities into polymer chains via nitroneâ€mediated radical coupling reactions. Journal of Polymer Science Part A, 2011, 49, 2118-2126.	2.5	32
234	An Optimized RGDâ€Decorated Micellar Drug Delivery System for Albendazole for the Treatment of Ovarian Cancer: From RAFT Polymer Synthesis to Cellular Uptake. Macromolecular Bioscience, 2011, 11, 219-233.	2.1	34

#	Article	IF	Citations
235	Thiolâ€alkyne Chemistry for the Preparation of Micelles with Glycopolymer Corona: Dendritic Surfaces versus Linear Glycopolymer in Their Ability to Bind to Lectins. Macromolecular Rapid Communications, 2011, 32, 1620-1626.	2.0	48
236	The Ever Changing Faces of Polymer Science: The 32nd Australasian Polymer Symposium. Australian Journal of Chemistry, 2011, 64, 979.	0.5	0
237	Modification of Polysaccharides Through Controlled/Living Radical Polymerization Grafting—Towards the Generation of High Performance Hybrids. Macromolecular Rapid Communications, 2010, 31, 1751-1772.	2.0	141
238	Neoglycopolymers Based on 4â€Vinylâ€1,2,3â€Triazole Monomers Prepared by Click Chemistry. Macromolecular Bioscience, 2010, 10, 119-126.	2.1	65
239	Synthesis of comb polymers via graftingâ€onto macromolecules bearing pendant diene groups via the heteroâ€Dielsâ€Alderâ€RAFT click concept. Journal of Polymer Science Part A, 2010, 48, 1773-1781.	2.5	47
240	Thermoâ€responsive glycopolymer chains grafted onto honeycomb structured porous films ⟨i>via⟨ i>RAFT polymerization as a thermoâ€dependent switcher for lectin Concanavalin a conjugation. Journal of Polymer Science Part A, 2010, 48, 3440-3455.	2.5	73
241	Polymers with Sugar Buckets - The Attachment of Cyclodextrins onto Polymer Chains. Australian Journal of Chemistry, 2010, 63, 195.	0.5	30
242	Synthesis of Core - Shell Nanoparticles with Polystyrene Core and PEO Corona from Core-Crosslinked Micelles by the RAFT Process. Australian Journal of Chemistry, 2010, 63, 1210.	0.5	13
243	Glycopolymer Decoration of Gold Nanoparticles Using a LbL Approach. Macromolecules, 2010, 43, 3775-3784.	2.2	69
244	Synthesis and Lectin Recognition of Glyco Star Polymers Prepared by "Clicking―Thiocarbohydrates onto a Reactive Scaffold. Macromolecules, 2010, 43, 8109-8114.	2.2	70
245	Controlled/Living <i>ab Initio</i> Emulsion Polymerization via a Glucose RAFT <i>stab</i> Degradable Cross-Linked Glyco-Particles for Concanavalin A/ <i> Fim</i> H Conjugations to Cluster <i>E. coli</i> Bacteria. Macromolecules, 2010, 43, 5211-5221.	2.2	134
246	Micelles with surface conjugated RGDpeptide and crosslinked polyurea core viaRAFT polymerization. Polymer Chemistry, 2010, 1, 171-182.	1.9	37
247	Electrostatic assembly of functional polymer combs onto gold nanoparticle surfaces: combining RAFT, click and LbL to generate new hybrid nanomaterials. Polymer Chemistry, 2010, 1, 1186.	1.9	30
248	Core-Cross-Linked Micelles Synthesized by Clicking Bifunctional Pt(IV) Anticancer Drugs to Isocyanates. Biomacromolecules, 2010, 11, 2290-2299.	2.6	86
249	Multilayer Buildup and Biofouling Characteristics of PSS-b-PEG Containing Films. Langmuir, 2010, 26, 9720-9727.	1.6	36
250	Synthesis of glycopolymers and their multivalent recognitions with lectins. Polymer Chemistry, 2010, 1, 1392.	1.9	338
251	Spin capturing with nitrones: radical coupling reactions with concurrent introduction of mid-chain functionality. Chemical Communications, 2010, 46, 1959-1961.	2.2	41
252	Spin Capturing with "Clickable―Nitrones: Generation of Miktoarmed Star Polymers. Macromolecules, 2010, 43, 3785-3793.	2.2	46

#	Article	IF	CITATIONS
253	Exploitable Flexible Honeycomb Structured Porous Films from Solâ´Gel Cross-Linkable Silicone Based Random Branched Copolymers. Chemistry of Materials, 2010, 22, 1878-1891.	3.2	34
254	Hairy Core–Shell Nanoparticles via RAFT: Where are the Opportunities and Where are the Problems and Challenges?. Macromolecular Rapid Communications, 2009, 30, 1603-1624.	2.0	70
255	Ultraâ€Fast RAFTâ€HDA <i>Click</i> Conjugation: An Efficient Route to High Molecular Weight Block Copolymers. Macromolecular Rapid Communications, 2009, 30, 1792-1798.	2.0	64
256	One Pot Synthesis of Surface PEGylated Core–Shell Microparticles by Suspension Polymerization with Surface Enrichment of Biotin/Avidin Conjugation. Macromolecular Bioscience, 2009, 9, 211-220.	2.1	18
257	Ultrafast Click Conjugation of Macromolecular Building Blocks at Ambient Temperature. Angewandte Chemie - International Edition, 2009, 48, 2411-2414.	7.2	213
258	The kinetics of enhanced spin capturing polymerization: Influence of the nitrone structure. Journal of Polymer Science Part A, 2009, 47, 1098-1107.	2.5	35
259	Coreâ€shell particles with glycopolymer shell and polynucleoside core via RAFT: From micelles to rods. Journal of Polymer Science Part A, 2009, 47, 1706-1723.	2.5	56
260	Efficient access to multiâ€arm star block copolymers by a combination of ATRP and RAFTâ€HDA <i>click</i> chemistry. Journal of Polymer Science Part A, 2009, 47, 2207-2213.	2.5	56
261	Synthesis of glycoâ€microspheres via a thiolâ€ene coupling reaction. Journal of Polymer Science Part A, 2009, 47, 5550-5556.	2.5	43
262	Strongly electron deficient sulfonyldithioformate based RAFT agents for hetero Dielsâ€Alder conjugation: Computational design and experimental evaluation. Journal of Polymer Science Part A, 2009, 47, 6053-6071.	2.5	48
263	Polygalactose Containing Nanocages: The RAFT Process for the Synthesis of Hollow Sugar Balls. Biomacromolecules, 2009, 10, 342-352.	2.6	81
264	Lectin Recognizable Biomaterials Synthesized via Nitroxide-Mediated Polymerization of a Methacryloyl Galactose Monomer. Macromolecules, 2009, 42, 9422-9434.	2.2	156
265	Formation Efficiency of ABA Blockcopolymers via Enhanced Spin Capturing Polymerization (ESCP): Locating the Alkoxyamine Function. Macromolecules, 2009, 42, 5027-5035.	2.2	35
266	Efficient synthesis of dendrimers via a thiol–yne and esterification process and their potential application in the delivery of platinum anti-cancer drugs. Chemical Communications, 2009, , 6291.	2.2	115
267	Synthesis of thiol-linked neoglycopolymers and thermo-responsive glycomicelles as potential drug carrier. Chemical Communications, 2009, , 1198 .	2.2	172
268	Macromolecular Cobalt Carbonyl Complexes Encapsulated in a <i>Click</i> -Cross-Linked Micelle Structure as a Nanoparticle To Deliver Cobalt Pharmaceuticals. Biomacromolecules, 2009, 10, 3215-3226.	2.6	59
269	Spherical Glycopolymer Architectures using RAFT: From Stars with a ?-Cyclodextrin Core to Thermoresponsive Core–Shell Particles. Australian Journal of Chemistry, 2009, 62, 813.	0.5	33
270	Graft block copolymers of propargyl methacrylate and vinyl acetate via a combination of RAFT/MADIX and click chemistry: Reaction analysis. Journal of Polymer Science Part A, 2008, 46, 155-173.	2.5	109

#	Article	IF	Citations
271	Simultaneous reversible addition fragmentation chain transfer and ringâ€opening polymerization. Journal of Polymer Science Part A, 2008, 46, 3058-3067.	2.5	40
272	Acidâ€Degradable Coreâ€Crosslinked Micelles Prepared from Thermosensitive Glycopolymers Synthesized via RAFT Polymerization. Macromolecular Rapid Communications, 2008, 29, 123-129.	2.0	138
273	Laser Induced Marking of Polymer Chains with Radical Spin Traps. Macromolecular Rapid Communications, 2008, 29, 503-510.	2.0	9
274	Access to Threeâ€Arm Star Block Copolymers by a Consecutive Combination of the Copper(<scp>I</scp>)â€Catalyzed Azide–Alkyne Cycloaddition and the RAFT Hetero Diels–Alder Concept. Macromolecular Rapid Communications, 2008, 29, 1090-1096.	2.0	65
275	Efficient Surface Modification of Divinylbenzene Microspheres via a Combination of RAFT and Hetero Dielsâ€Alder Chemistry. Macromolecular Rapid Communications, 2008, 29, 1431-1437.	2.0	93
276	Synthesis of Sevenâ€Arm Poly(vinyl pyrrolidone) Star Polymers with Lysozyme Core Prepared by MADIX/RAFT Polymerization. Macromolecular Rapid Communications, 2008, 29, 1666-1671.	2.0	39
277	Macromol. Rapid Commun. 17/2008. Macromolecular Rapid Communications, 2008, 29, NA-NA.	2.0	0
278	Microwells with Patterned Proteins by a Selfâ€Assembly Process Using Honeycombâ€Structured Porous Films. Advanced Materials, 2008, 20, 3550-3556.	11.1	114
279	Access to cyclic polystyrenes via a combination of reversible addition fragmentation chain transfer (RAFT) polymerization and click chemistry. Polymer, 2008, 49, 2274-2281.	1.8	114
280	A Study into the Stability of 3,6-Dihydro-2 <i>H</i> -thiopyran Rings: Key Linkages in the RAFT Hetero-Dielsâ^'Alder <i>Click</i> Concept. Macromolecules, 2008, 41, 7904-7912.	2.2	53
281	Degradable Disulfide Core-Cross-Linked Micelles as a Drug Delivery System Prepared from Vinyl Functionalized Nucleosides via the RAFT Process. Biomacromolecules, 2008, 9, 3321-3331.	2.6	156
282	An atom-efficient conjugation approach to well-defined block copolymers using RAFT chemistry and hetero Diels–Alder cycloaddition. Chemical Communications, 2008, , 2052.	2.2	155
283	Reversible Addition Fragmentation Chain Transfer (RAFT) and Hetero-Dielsâ ⁻ Alder Chemistry as a Convenient Conjugation Tool for Access to Complex Macromolecular Designs. Macromolecules, 2008, 41, 4120-4126.	2.2	168
284	Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization in Undergraduate Polymer Science Lab. Journal of Chemical Education, 2008, 85, 97.	1.1	15
285	RAFT polymerization: an avenue to functional polymeric micelles for drug delivery. Chemical Communications, 2008, , 3486.	2.2	200
286	Grafting thermoresponsive polymers onto honeycomb structured porous films using the RAFT process. Journal of Materials Chemistry, 2008, 18, 4718.	6.7	65
287	Synthesis, Multilayer Film Assembly, and Capsule Formation of Macromolecularly Engineered Acrylic Acid and Styrene Sulfonate Block Copolymers. Langmuir, 2008, 24, 8981-8990.	1.6	30
288	Enhanced Ionization in Electrospray Ionization Mass Spectrometry of Labile End-Group-Containing Polystyrenes Using Silver(I) Tetrafluoroborate as Doping Salt. Macromolecules, 2008, 41, 1966-1971.	2,2	50

#	Article	IF	CITATIONS
289	Direct Synthesis of Well-Defined Heterotelechelic Polymers for Bioconjugations. Macromolecules, 2008, 41, 5641-5650.	2.2	156
290	Chain Length Dependent Termination Rate Coefficients of Methyl Methacrylate (MMA) in the Gel Regime:Â Accessingkti,iUsing Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization. Macromolecules, 2007, 40, 2730-2736.	2.2	56
291	Chemoâ€enzymatic Synthesis and RAFT Polymerization of 6â€ <i>O</i> â€Methacryloyl Mannose: A Suitable Glycopolymer for Binding to the Tetrameric Lectin Concanavalin A?. Macromolecular Symposia, 2007, 255, 81-89.	0.4	43
292	Scope for Accessing the Chain Length Dependence of the Termination Rate Coefficient for Disparate Length Radicals in Acrylate Free Radical Polymerization. Macromolecular Symposia, 2007, 248, 82-93.	0.4	8
293	RAFT Chemistry and Huisgen 1,3-Dipolar Cycloaddition: A Route to Block Copolymers of Vinyl Acetate and 6-O-Methacryloyl Mannose?. Australian Journal of Chemistry, 2007, 60, 405.	0.5	80
294	Verification of Controlled Grafting of Styrene from Cellulose via Radiation-Induced RAFT Polymerization. Macromolecules, 2007, 40, 7140-7147.	2.2	176
295	Well-Defined Proteinâ^'Polymer Conjugates via in Situ RAFT Polymerization. Journal of the American Chemical Society, 2007, 129, 7145-7154.	6.6	392
296	Shell-Cross-Linked Micelles Containing Cationic Polymers Synthesized via the RAFT Process:  Toward a More Biocompatible Gene Delivery System. Biomacromolecules, 2007, 8, 2890-2901.	2.6	105
297	Mapping Free Radical Reactivity:Â A High-Resolution Electrospray Ionizationâ 'Mass Spectrometry Study of Photoinitiation Processes in Methyl Methacrylate Free Radical Polymerization. Macromolecules, 2007, 40, 26-39.	2.2	60
298	Mapping Poly(butyl acrylate) Product Distributions by Mass Spectrometry in a Wide Temperature Range: A Suppression of Midchain Radical Side Reactions. Macromolecules, 2007, 40, 8906-8912.	2.2	74
299	Mapping Photolysis Product Radical Reactivities via Soft Ionization Mass Spectrometry in Acrylate, Methacrylate, and Itaconate Systems. Macromolecules, 2007, 40, 6820-6833.	2.2	60
300	Electrospray Ionization Mass Spectrometry Investigation of Reversible Addition Fragmentation Chain Transfer Mediated Acrylate Polymerizations Initiated via 60Co \hat{l}^3 -Irradiation: \hat{A} Mapping Reaction Pathways. Macromolecules, 2007, 40, 4142-4153.	2.2	44
301	Mapping Formation Pathways and End Group Patterns of Stimuli-Responsive Polymer Systems via High-Resolution Electrospray Ionization Mass Spectrometry. Biomacromolecules, 2007, 8, 2404-2415.	2.6	31
302	Ambient Temperature RAFT Polymerization of Acrylic Acid Initiated with Ultraviolet Radiation in Aqueous Solution. Macromolecules, 2007, 40, 2978-2980.	2.2	109
303	Inâ€Situ Formation of Protein–Polymer Conjugates through Reversible Addition Fragmentation Chain Transfer Polymerization. Angewandte Chemie - International Edition, 2007, 46, 3099-3103.	7.2	207
304	Direct Synthesis of Pyridyl Disulfide-Terminated Polymers by RAFT Polymerization. Macromolecular Rapid Communications, 2007, 28, 305-314.	2.0	104
305	Complex Macromolecular Architectures by Reversible Addition Fragmentation Chain Transfer Chemistry: Theory and Practice. Macromolecular Rapid Communications, 2007, 28, 539-559.	2.0	329
306	Thioketone-Mediated Polymerization of Butyl Acrylate: Controlling Free-Radical Polymerization via a Dormant Radical Species. Macromolecular Rapid Communications, 2007, 28, 746-753.	2.0	36

#	Article	IF	Citations
307	Degradation of Poly(methyl methacrylate) Model Compounds at Constant Elevated Temperature Studied via High Resolution Electrospray Ionization Mass Spectrometry (ESIâ€MS). Macromolecular Rapid Communications, 2007, 28, 1593-1600.	2.0	32
308	Back Cover: Macromol. Rapid Commun. 3/2007. Macromolecular Rapid Communications, 2007, 28, 356-356.	2.0	0
309	Synthesis of semi-biodegradable crosslinked microspheres for the delivery of 1,25 dihydroxyvitamin D3 for the treatment of hepatocellular carcinoma. European Polymer Journal, 2007, 43, 1754-1767.	2.6	15
310	Depolymerization kinetics of di(4-tert-butyl cyclohexyl) itaconate and Mark-Houwink-Kuhn-Sakurada parameters of di(4-tert-butyl cyclohexyl) itaconate and di-n-butyl itaconate. Journal of Polymer Science Part A, 2007, 45, 1931-1943.	2.5	12
311	Core-shell microspheres with surface grafted poly(vinyl alcohol) as drug carriers for the treatment of hepatocellular carcinoma. Journal of Polymer Science Part A, 2007, 45, 3256-3272.	2.5	34
312	Ambient temperature synthesis of well-defined microspheres via precipitation polymerization initiated by UV-irradiation. Journal of Polymer Science Part A, 2007, 45, 3482-3487.	2.5	39
313	The Use of Novel F-RAFT Agents in High Temperature and High Pressure Ethene Polymerization: Can Control be Achieved?. Australian Journal of Chemistry, 2007, 60, 788.	0.5	25
314	Honeycomb structured porous films from amphiphilic block copolymers prepared via RAFT polymerization. Polymer, 2007, 48, 4950-4965.	1.8	121
315	Gold-Loaded Organic/Inorganic Nanocomposite Honeycomb Membranes. Australian Journal of Chemistry, 2006, 59, 539.	0.5	27
316	Synthesis of Star Polymers using RAFT Polymerization: What is Possible?. Australian Journal of Chemistry, 2006, 59, 719.	0.5	132
317	Thioketone spin traps as mediating agents for free radical polymerization processes. Chemical Communications, 2006, , 835.	2.2	56
318	Polymer Science in Undergraduate Chemical Engineering and Industrial Chemistry Curricula: A Modular Approach. Journal of Chemical Education, 2006, 83, 1521.	1.1	13
319	Honeycomb-Structured Porous Films from Polypyrrole-Containing Block Copolymers Prepared via RAFT Polymerization as a Scaffold for Cell Growth. Biomacromolecules, 2006, 7, 1072-1082.	2.6	193
320	Accessing the Chain Length Dependence of the Termination Rate Coefficient for Disparate Length Radicals via Reversible Addition Fragmentation Chain Transfer Chemistry:Â A Theoretical Study. Macromolecules, 2006, 39, 4975-4982.	2.2	20
321	Design Criteria for Star Polymer Formation Processes via Living Free Radical Polymerization. Macromolecules, 2006, 39, 6406-6419.	2.2	101
322	Synthesis of Various Glycopolymer Architectures via RAFT Polymerization:Â From Block Copolymers to Stars. Biomacromolecules, 2006, 7, 232-238.	2.6	150
323	Living free-radical polymerization of sterically hindered monomers: Improving the understanding of 1,1-disubstituted monomer systems. Journal of Polymer Science Part A, 2006, 44, 3692-3710.	2.5	47
324	Investigation of the influence of the architectures of poly(vinyl pyrrolidone) polymers made via the reversible addition–fragmentation chain transfer/macromolecular design via the interchange of xanthates mechanism on the stabilization of suspension polymerizations. Journal of Polymer Science Part A, 2006, 44, 4372-4383.	2.5	105

#	Article	IF	Citations
325	Using the reversible addition–fragmentation chain transfer process to synthesize core-crosslinked micelles. Journal of Polymer Science Part A, 2006, 44, 2177-2194.	2.5	66
326	Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. Journal of Polymer Science Part A, 2006, 44, 2363-2375.	2.5	288
327	The effect of charged groups on protein interactions with poly(HEMA) hydrogels. Biomaterials, 2006, 27, 567-575.	5.7	125
328	Lysozyme interaction with poly(HEMA)-based hydrogel. Biomaterials, 2006, 27, 1341-1345.	5.7	63
329	Probing the reaction kinetics of vinyl acetate free radical polymerization via living free radical polymerization (MADIX). Polymer, 2006, 47, 999-1010.	1.8	79
330	Effect of an added base on (4-cyanopentanoic acid)-4-dithiobenzoate mediated RAFT polymerization in water. Polymer, 2006, 47, 1011-1019.	1.8	74
331	RAFT and click chemistry: A versatile approach to well-defined block copolymers. Chemical Communications, 2006, , 5051-5053.	2.2	280
332	Obtaining Chain Length Dependent Termination Rate Coefficients via Thermally Initiated Reversible Addition Fragmentation Chain Transfer Experiments. ACS Symposium Series, 2006, , 486-500.	0.5	6
333	Water-assisted formation of honeycomb structured porous films. Journal of Porous Materials, 2006, 13, 213-223.	1.3	56
334	Synthesis of poly(vinyl alcohol) combs via MADIX/RAFT polymerization. Polymer, 2006, 47, 1073-1080.	1.8	88
335	RAFT Polymerization ofN-Isopropylacrylamide and Acrylic Acid underÎ ³ -Irradiation in Aqueous Media. Macromolecular Rapid Communications, 2006, 27, 821-828.	2.0	99
336	Temperature-Responsive Glycopolymer Brushes Synthesized via RAFT Polymerization Using the Z-group Approach. Macromolecular Rapid Communications, 2006, 27, 1121-1126.	2.0	142
337	When Harry Met Sally: Polymer Chemistry Meets Biomaterials. Australian Journal of Chemistry, 2006, 59, 477.	0.5	4
338	Dendrimers as Scaffolds for Reversible Addition Fragmentation Chain Transfer (RAFT) Agents: a Route to Star-Shaped Block Copolymers. Australian Journal of Chemistry, 2005, 58, 483.	0.5	32
339	Remarkable Solvent Effects of Oxygen- and Sulfur-Containing Compounds on the Propagation Rate of Methyl Methacrylate. Zeitschrift Fur Physikalische Chemie, 2005, 219, 267-281.	1.4	11
340	An in-depth analytical approach to the mechanism of the RAFT process in acrylate free radical polymerizations via coupled size exclusion chromatography–electrospray ionization mass spectrometry (SEC–ESI-MS). Polymer, 2005, 46, 8448-8457.	1.8	81
341	Solvent and oxygen effects on the free radical polymerization of 6-O-vinyladipoyl-d-glucopyranose. Polymer, 2005, 46, 2831-2835.	1.8	22
342	A natural-synthetic hybrid copolymer of polyhydroxyoctanoate-diethylene glycol: biosynthesis and properties. Polymer, 2005, 46, 6587-6594.	1.8	35

#	Article	IF	Citations
343	Living free radical polymerization (RAFT) of dodecyl acrylate: Chain length dependent termination, mid-chain radicals and monomer reaction order. Polymer, 2005, 46, 6797-6809.	1.8	70
344	Polystyrene comb polymers built on cellulose or poly(styrene-co-2-hydroxyethylmethacrylate) backbones as substrates for the preparation of structured honeycomb films. European Polymer Journal, 2005, 41, 2264-2277.	2.6	135
345	A Synthetic Approach to a Novel Class of Fluorine-Bearing Reversible Addition - Fragmentation Chain Transfer (RAFT) Agents: F-RAFT. Australian Journal of Chemistry, 2005, 58, 437.	0.5	56
346	Accessing Chain Length Dependent Termination Rate Coefficients of Methyl Methacrylate (MMA) via the Reversible Addition Fragmentation Chain Transfer (RAFT) Process. Macromolecular Chemistry and Physics, 2005, 206, 2047-2053.	1,1	82
347	Advanced Computational Strategies for Modelling the Evolution of Full Molecular Weight Distributions Formed During Multiarmed (Star) Polymerisations. Macromolecular Theory and Simulations, 2005, 14, 143-157.	0.6	47
348	Transesterification of poly(ethyl-α-hydroxymethacrylate) prepared via reversible addition-fragmentation chain transfer polymerization. Journal of Polymer Science Part A, 2005, 43, 5699-5703.	2.5	10
349	Grafting of n-Butyl Acrylate and N,N'-Dimethyl Acrylamide from Poly(divinylbenzene) Microspheres by RAFT Polymerization. Australian Journal of Chemistry, 2005, 58, 468.	0.5	30
350	A Simple Approach to Micro-Patterned Surfaces by Breath Figures with Internal Structure Using Thermoresponsive Amphiphilic Block Copolymers. Australian Journal of Chemistry, 2005, 58, 595.	0.5	40
351	Depropagation Kinetics of Sterically Demanding Monomers:Â A Pulsed Laser Size Exclusion Chromatography Study. Macromolecules, 2005, 38, 5944-5954.	2.2	31
352	Well-Defined Diblock Glycopolymers from RAFT Polymerization in Homogeneous Aqueous Medium. Macromolecules, 2005, 38, 9075-9084.	2.2	122
353	Mapping Chain Length and Conversion Dependent Termination Rate Coefficients in Methyl Acrylate Free Radical Polymerization. Macromolecules, 2005, 38, 10323-10327.	2.2	52
354	Access to Chain Length Dependent Termination Rate Coefficients of Methyl Acrylate via Reversible Additionâ^'Fragmentation Chain Transfer Polymerization. Macromolecules, 2005, 38, 2595-2605.	2.2	96
355	Poly(vinyl ester) Star Polymers via Xanthate-Mediated Living Radical Polymerization:Â From Poly(vinyl) Tj ETQq1	l 0,78431 2.2	4 rgBT /Over 162
356	Chain Length Dependent Termination in Butyl Acrylate Free-Radical Polymerization Studied via Stationary and Pulsed Laser Initiated RAFT Polymerization. Macromolecules, 2005, 38, 9497-9508.	2,2	93
357	Synthesis of amphiphilic block copolymers based on poly(dimethylsiloxane) via fragmentation chain transfer (RAFT) polymerization. Polymer, 2004, 45, 4383-4389.	1.8	70
358	Reversible addition fragmentation chain transfer polymerization of sterically hindered monomers: Toward well-defined rod/coil architectures. Journal of Polymer Science Part A, 2004, 42, 2432-2443.	2.5	65
359	Initiator efficiency of 2,2?-azobis(isobutyronitrile) in bulk dodecyl acrylate free-radical polymerizations over a wide conversion and molecular weight range. Journal of Polymer Science Part A, 2004, 42, 5170-5179.	2.5	23
360	Synthesis of core-shell poly(divinylbenzene) microspheres via reversible addition fragmentation chain transfer graft polymerization of styrene. Journal of Polymer Science Part A, 2004, 42, 5067-5076.	2.5	99

#	Article	IF	CITATIONS
361	Dendrimers as scaffolds for multifunctional reversible addition-fragmentation chain transfer agents: Syntheses and polymerization. Journal of Polymer Science Part A, 2004, 42, 5877-5890.	2.5	105
362	Amphiphilic Block Copolymers Based on Poly(2-acryloyloxyethyl phosphorylcholine) Prepared via RAFT Polymerisation as Biocompatible Nanocontainers. Macromolecular Bioscience, 2004, 4, 445-453.	2.1	122
363	Synthesis of Macromonomers via Catalytic Chain Transfer(CCT) Polymerization and their Characterization via NMR Spectroscopy and Electrospray Ionization Mass Spectrometry(ESI-MS). Macromolecular Chemistry and Physics, 2004, 205, 752-761.	1.1	24
364	A Detailed On-Line FT/NIR and 1H NMR Spectroscopic Investigation into Factors Causing Inhibition in Xanthate-Mediated Vinyl Acetate Polymerization. Macromolecular Chemistry and Physics, 2004, 205, 925-936.	1.1	96
365	Reversible addition fragmentation chain transfer copolymerization: influence of the RAFT process on the copolymer composition. Polymer, 2004, 45, 3997-4007.	1.8	71
366	Molecular composite materials formed from block copolymers containing a side-chain liquid crystalline segment and an amorphous styrene/maleic anhydride segment. Polymer, 2004, 45, 7401-7415.	1.8	33
367	Probing mechanistic features of conventional, catalytic and living free radical polymerizations using soft ionization mass spectrometric techniques. Polymer, 2004, 45, 7791-7805.	1.8	116
368	Poly(vinyl alcohol) star polymers prepared via MADIX/RAFT polymerisationElectronic Supplementary Information (ESI) available: synthesis and NMR data of MADIX agents, polymerisation and analysis technique. See http://www.rsc.org/suppdata/cc/b4/b404763j/. Chemical Communications, 2004, , 1546.	2.2	122
369	Shell-Cross-Linked Vesicles Synthesized from Block Copolymers of Poly(d,l-lactide) and Poly(N-isopropyl acrylamide) as Thermoresponsive Nanocontainers. Langmuir, 2004, 20, 10809-10817.	1.6	195
370	Chemoenzymatic Synthesis of Narrow-Polydispersity Glycopolymers:Â Poly(6-O-vinyladipoyl-d-glucopyranose). Biomacromolecules, 2004, 5, 255-260.	2.6	101
371	Consistent Experimental and Theoretical Evidence for Long-Lived Intermediate Radicals in Living Free Radical Polymerization. Journal of the American Chemical Society, 2004, 126, 15915-15923.	6.6	166
372	Facile Access to Chain Length Dependent Termination Rate Coefficients via Reversible Additionâ^'Fragmentation Chain Transfer (RAFT) Polymerization:Â Influence of the RAFT Agent Structure. Macromolecules, 2004, 37, 2404-2410.	2.2	56
373	Well-Defined Glycopolymers from RAFT Polymerization: Poly(methyl 6-O-methacryloyl-α-d-glucoside) and Its Block Copolymer with 2-Hydroxyethyl Methacrylate. Macromolecules, 2004, 37, 7530-7537.	2.2	140
374	Complex Molecular Architecture Polymers via RAFT. Australian Journal of Chemistry, 2004, 57, 19.	0.5	64
375	Influences of the Structural Design of RAFT Agents on Living Radical Polymerization Kinetics. ACS Symposium Series, 2003, , 551-569.	0.5	17
376	Xanthate Mediated Living Polymerization of Vinyl Acetate: A Systematic Variation in MADIX/RAFT Agent Structure. Macromolecular Chemistry and Physics, 2003, 204, 1160-1168.	1.1	312
377	Nano- and Micro-Engineering of Ordered Porous Blue-Light-Emitting Films by Templating Well-Defined Organic Polymers Around Condensing Water Droplets. Angewandte Chemie - International Edition, 2003, 42, 3664-3668.	7.2	85
378	RAFTing down under: Tales of missing radicals, fancy architectures, and mysterious holes. Journal of Polymer Science Part A, 2003, 41, 365-375.	2.5	416

#	Article	IF	CITATIONS
379	Hyperbranched polymers as scaffolds for multifunctional reversible addition-fragmentation chain-transfer agents: A route to polystyrene-core -polyesters and polystyrene-block -poly(butyl) Tj ETQq1 1 0.78	432 .\$ rgBT	 / @se rlock
380	Honeycomb structured porous films prepared from carbohydrate based polymers synthesized via the RAFT process. Journal of Materials Chemistry, 2003, 13, 2090.	6.7	200
381	Biomimetic Honeycomb-Structured Surfaces Formed from Block Copolymers Incorporating Acryloyl Phosphorylcholine. Australian Journal of Chemistry, 2003, 56, 1035.	0.5	59
382	Microgel stars viaReversible Addition Fragmentation Chain Transfer (RAFT) polymerisation — a facile route to macroporous membranes, honeycomb patterned thin films and inverse opal substrates. Journal of Materials Chemistry, 2003, 13, 2819-2824.	6.7	117
383	Formation of Regular Honeycomb-Patterned Porous Film by Self-Organization. Australian Journal of Chemistry, 2002, 55, 239.	0.5	182
384	Star polymer synthesis using trithiocarbonate functional ?-cyclodextrin cores (reversible) Tj ETQq0 0 0 rgBT /Over 4498-4512.	lock 10 Tf 2.5	50 547 Td (258
385	Synthesis of Poly(styrene) Star Polymers Grown from Sucrose, Glucose, and Cyclodextrin Cores via Living Radical Polymerization Mediated by a Half-Metallocene Iron Carbonyl Complex. Macromolecules, 2001, 34, 5433-5438.	2.2	80
386	Star-polymer synthesis via radical reversible addition-fragmentation chain-transfer polymerization. Journal of Polymer Science Part A, 2001, 39, 2777-2783.	2.5	205
387	Porous Polymer Films and Honeycomb Structures Made by the Self-Organization of Well-Defined Macromolecular Structures Created by Living Radical Polymerization Techniques. Angewandte Chemie - International Edition, 2001, 40, 3428-3432.	7.2	219
388	Title is missing!., 0,,.		10
389	Title is missing!., 0,,.		9
390	Scope for Accessing the Chain Length Dependence of the Termination Rate Coefficient for Disparate Length Radicals in Acrylate Free Radical Polymerization., 0,, 82-93.		0