Antonio Carlos Guastaldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5474525/publications.pdf

Version: 2024-02-01

84 papers 1,992 citations

304368 22 h-index 264894 42 g-index

84 all docs 84 docs citations

84 times ranked 2302 citing authors

#	Article	IF	Citations
1	Comparative Evaluation of Implants with Different Surface Treatments Placed in Human Edentulous Mandibles: A 1-Year Prospective Study. Journal of Maxillofacial and Oral Surgery, 2022, 21, 815-823.	0.6	2
2	A new multiphase calcium phosphate graft material improves bone healingâ€"An in vitro and in vivo analysis. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 2686-2704.	1.6	4
3	Potentialities and limitations of computer-aided design and manufacturing technology in the nonextraction treatment of Class I malocclusion. American Journal of Orthodontics and Dentofacial Orthopedics, 2021, 159, 86-96.	0.8	3
4	Topographic characterization of cp-Ti implants with machined and modified surface by LASER. Research, Society and Development, 2021, 10, e15910212217.	0.0	0
5	Calcium phosphates nanoparticles: The effect of freeze-drying on particle size reduction. Materials Chemistry and Physics, 2020, 239, 122004.	2.0	13
6	Preparation of Laser-Modified Ti-15Mo Surfaces With Multiphase Calcium Phosphate Coatings. Materials Research, 2020, 23, .	0.6	1
7	Effect of Yd:YAG laser irradiation on the shear bond strength of orthodontic metal brackets. Dental Press Journal of Orthodontics, 2020, 25, 28-35.	0.2	2
8	Sol-gel based calcium phosphates coating deposited on Co-Cr-Ni-Mo alloys modified by laser beam irradiation for cardiovascular devices. Materials Today: Proceedings, 2019, 14, 663-670.	0.9	1
9	Natural rubber latex membranes incorporated with three different types of propolis: Physical-chemistry and antimicrobial behaviours. Materials Science and Engineering C, 2019, 97, 576-582.	3 . 8	42
10	Physicochemical, morphological, and biological analyses of Ti-15Mo alloy surface modified by laser beam irradiation. Lasers in Medical Science, 2019, 34, 537-546.	1.0	15
11	Lower Susceptibility of Laser-irradiated Ti-15Mo Surface to Methicillin-resistant Staphylococcus aureus Cells Adhesion. Materials Research, 2019, 22, .	0.6	6
12	Biomimetic calcium phosphates-based coatings deposited on binary Ti-Mo alloys modified by laser beam irradiation for biomaterial/clinical applications. MRS Advances, 2018, 3, 1711-1718.	0.5	4
13	Calcium phosphates of biological importance based coatings deposited on Ti-15Mo alloy modified by laser beam irradiation for dental and orthopedic applications. Ceramics International, 2018, 44, 22432-22438.	2.3	12
14	Sol–gel based calcium phosphates coatings deposited on binary Ti–Mo alloys modified by laser beam irradiation for biomaterial/clinical applications. Journal of Materials Science: Materials in Medicine, 2018, 29, 82.	1.7	6
15	Synthesis by Wet Chemical Method of Different Phases of Apatites Applying Ultrasound. Journal of Bionanoscience, 2018, 12, 134-141.	0.4	1
16	Influence of the Application of Ultrasound During the Synthesis of Calcium Phosphates. Journal of Bionanoscience, 2018, 12, 733-738.	0.4	1
17	Surface physical chemistry properties in coated bacterial cellulose membranes with calcium phosphate. Materials Science and Engineering C, 2017, 75, 1359-1365.	3.8	22
18	Physical, chemical and antimicrobial implications of the association of propolis with a natural rubber latex membrane. Materials Letters, 2017, 209, 39-42.	1.3	25

#	Article	IF	CITATIONS
19	In vivo evaluation of cp Ti implants with modified surfaces by laser beam with and without hydroxyapatite chemical deposition and without and with thermal treatment: topographic characterization and histomorphometric analysis in rabbits. Clinical Oral Investigations, 2017, 21, 685-699.	1.4	21
20	Laser-modified titanium surfaces enhance the osteogenic differentiation of human mesenchymal stem cells. Stem Cell Research and Therapy, 2017, 8, 269.	2.4	18
21	Physical Chemistry Properties Influences in Bacterial Cellulose Biocomposites. Journal of Bionanoscience, 2017, 11, 573-577.	0.4	2
22	Bacterial cellulose for advanced medical materials. , 2016, , 57-82.		10
23	Skeletal stem cell and bone implant interactions are enhanced by LASER titanium modification. Biochemical and Biophysical Research Communications, 2016, 473, 719-725.	1.0	22
24	Natural rubber latex coated with calcium phosphate for biomedical application. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 1256-1268.	1.9	47
25	Bacterial Cellulose Biocomposites for Periodontology Treatment. Advanced Science, Engineering and Medicine, 2015, 7, 409-414.	0.3	8
26	Physically Modified Bacterial Cellulose Biocomposites for Dental Materials Scaffolds. Materials Focus, 2015, 4, 111-117.	0.4	5
27	Physically Modified Bacterial Cellulose Biocomposites for Guided Tissue Regeneration. Science of Advanced Materials, 2015, 7, 1657-1664.	0.1	13
28	Calcium Phosphates of Interest Biological Coatings on Titanium Surfaces Modified by an Yb:YAG Laser Beam Irradiation. Materials Focus, 2015, 4, 129-133.	0.4	0
29	Histometric analysis and topographic characterization of <i>cp Ti</i> implants with surfaces modified by laser with and without silica deposition. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1677-1688.	1.6	16
30	Effect of surface treatment on the bond strength between yttria partially stabilized zirconia ceramics and resin cement. Journal of Prosthetic Dentistry, 2014, 112, 357-364.	1,1	35
31	Biomechanical Study in Polyurethane Mandibles of Different Metal Plates and Internal Fixation Techniques, Employed in Mandibular Angle Fractures. Journal of Craniofacial Surgery, 2014, 25, 2246-2250.	0.3	6
32	Bacterial Cellulose Nanobiocomposites for Periodontal Disease. Journal of Bionanoscience, 2014, 8, 319-324.	0.4	7
33	Novel Antimicrobial Peptides Bacterial Cellulose Obtained by Symbioses Culture Between Polyhexanide Biguanide (PHMB) and Green Tea. Journal of Biomaterials and Tissue Engineering, 2014, 4, 59-64.	0.0	19
34	Bacterial Cellulose/Chondroitin Sulfate for Dental Materials Scaffolds. Journal of Biomaterials and Tissue Engineering, 2014, 4, 150-154.	0.0	13
35	Bacterial Cellulose Nanobiocomposites for Dental Materials Scaffolds. Journal of Biomaterials and Tissue Engineering, 2014, 4, 536-542.	0.0	10
36	Bacterial Cellulose Biocomposites for Guided Tissue Regeneration. Science of Advanced Materials, 2014, 6, 2673-2678.	0.1	14

#	Article	IF	CITATIONS
37	Novel Chemically Modified Bacterial Cellulose Nanocomposite as Potential Biomaterial for Stem Cell Therapy Applications. Current Stem Cell Research and Therapy, 2014, 9, 117-123.	0.6	22
38	The Influence of the Heat Treatment Temperatures in Calcium Phosphate Synthesis. Journal of Biomaterials and Tissue Engineering, 2014, 4, 744-748.	0.0	1
39	Biomedical Ti–Mo Alloys with Surface Machined and Modified by Laser Beam: Biomechanical, Histological, and Histometric Analysis in Rabbits. Clinical Implant Dentistry and Related Research, 2013, 15, 427-437.	1.6	20
40	Commercially pure titanium implants with surfaces modified by laser beam with and without chemical deposition of apatite. Biomechanical and topographical analysis in rabbits. Clinical Oral Implants Research, 2013, 24, 896-903.	1.9	29
41	Comparative <i>in vivo</i> study of commercially pure Ti implants with surfaces modified by laser with and without silicate deposition: Biomechanical and scanning electron microscopy analysis. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 76-84.	1.6	26
42	Nondecalcified Histologic Study of Bone Response to Titanium Implants Topographically Modified by Laser With and Without Hydroxyapatite Coating. International Journal of Periodontics and Restorative Dentistry, 2013, 33, 689-696.	0.4	13
43	Obtenção de fosfatos de cálcio pelo método biomimético sobre a superfÃcie da liga Ti-6Al-4V modificada pelo laser Nd:YAG. Revista Materia, 2013, 18, 1306-1312.	0.1	O
44	Adhesion strength characterization of PVDF/HA coating on cp Ti surface modified by laser beam irradiation. Applied Surface Science, 2012, 258, 10110-10114.	3.1	28
45	Surface and Biomechanical Study of Titanium Implants Modified by Laser With and Without Hydroxyapatite Coating, in Rabbits. Journal of Oral Implantology, 2012, 38, 231-237.	0.4	19
46	Laser ablation in titanium implants followed by biomimetic hydroxyapatite coating: Histomorphometric study in rabbits. Microscopy Research and Technique, 2012, 75, 940-948.	1.2	30
47	Bioactive coating on titanium implants modified by Nd:YVO4 laser. Applied Surface Science, 2011, 257, 4575-4580.	3.1	17
48	Study of Corrosion Resistance of Laser Welded Au-Pd-Ag-In Alloy Using Electrochemical Techniques. Materials Sciences and Applications, 2011, 02, 711-715.	0.3	0
49	Fosfatos de cálcio de interesse biológico: importância como biomateriais, propriedades e métodos de obtenção de recobrimentos. Quimica Nova, 2010, 33, 1352-1358.	0.3	38
50	Biological Performance of Chemical Hydroxyapatite Coating Associated With Implant Surface Modification by Laser Beam: Biomechanical Study in Rabbit Tibias. Journal of Oral and Maxillofacial Surgery, 2009, 67, 1706-1715.	0.5	65
51	Photo-electrochemical investigation of anodic oxide films on cast Ti–Mo alloys. I. Anodic behaviour and effect of alloy composition. Electrochimica Acta, 2009, 54, 1395-1402.	2.6	16
52	Hydroxyapatite deposition study through polymeric process on commercially pure Ti surfaces modified by laser beam irradiation. Journal of Materials Science, 2009, 44, 4056-4061.	1.7	12
53	Biomimetic apatite formation on Ultra-High Molecular Weight Polyethylene (UHMWPE) using modified biomimetic solution. Journal of Materials Science: Materials in Medicine, 2009, 20, 1215-1222.	1.7	28
54	Apatite coatings onto titanium surfaces submitted to laser ablation with different energy densities. Surface and Coatings Technology, 2009, 204, 399-403.	2.2	10

#	Article	IF	CITATIONS
55	Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications. Acta Biomaterialia, 2009, 5, 399-405.	4.1	241
56	Evaluation of titanium implants with surface modification by laser beam: biomechanical study in rabbit tibias. Brazilian Oral Research, 2009, 23, 137-143.	0.6	60
57	Investigation of the metal/porcelain interface in LASER-welded Ni–Cr–Mo alloyArticle based on a version presented at the XXXII CONSOLDA, Belo Horizonte, Minas Gerais, Brazil, 2–5 October 2006 Welding International, 2009, 23, 193-199.	0.3	1
58	Electrochemical behavior of Ti–Mo alloys applied as biomaterial. Corrosion Science, 2008, 50, 938-945.	3.0	123
59	A comparative study of TIG and laser welded joints using commercial purity titanium used in prostheses supported by implants. Welding International, 2008, 22, 834-839.	0.3	2
60	Desenvolvimento e caracterização de suportes porosos de polietileno de ultra alto peso molecular (PEUAPM) para utilização como biomaterial para reposição e regeneração óssea. Polimeros, 2008, 18, 277-280.	0.2	8
61	Electrochemical stability of anodic titanium oxide films grown at potentials higher than 3V in a simulated physiological solution. Corrosion Science, 2007, 49, 1645-1655.	3.0	36
62	Estudo da influência dos Ãons K+, Mg2+, SO4(2-) e CO3(2-) na cristalização biomimética de fosfato de cálcio amorfo (ACP) e conversão a fosfato octacálcico (OCP). Quimica Nova, 2007, 30, 892-896.	0.3	9
63	Development of Ti–Mo alloys for biomedical applications: Microstructure and electrochemical characterization. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 452-453, 727-731.	2.6	154
64	Surface modification of Ti dental implants by Nd:YVO4 laser irradiation. Applied Surface Science, 2007, 253, 9203-9208.	3.1	84
65	Biomateriais: deposição de hidroxiapatita sobre superfÃεie de Ti-cp modificada por aspersão térmica. Quimica Nova, 2007, 30, 1129-1232.	0.3	4
66	Analyse titanium surface irradiated with laser, with and without deposited of durapatite. Acta Cirurgica Brasileira, 2006, 21, 57-62.	0.3	7
67	Comparison of crystallinity between natural hydroxyapatite and synthetic cp-Ti /HA coatings. Materials Research, 2005, 8, 207-211.	0.6	22
68	Evaluation of Procera/Porcelain Interface in Metal-Free Prosthesis. Materials Science Forum, 2005, 498-499, 606-611.	0.3	0
69	Analysis of Failed Commercially Pure Titanium Dental Implants: A Scanning Electron Microscopy and Energy-Dispersive Spectrometer X-Ray Study. Journal of Periodontology, 2005, 76, 1092-1099.	1.7	31
70	Corrosion of the component phases presents in high copper dental amalgams. Application of electrochemical impedance spectroscopy and electrochemical noise analysis. Corrosion Science, 2005, 47, 635-647.	3.0	20
71	Electrochemical impedance spectroscopy characterization of passive film formed on implant Ti–6Al–7Nb alloy in Hank's solution. Journal of Materials Science: Materials in Medicine, 2004, 15, 55-59.	1.7	149
72	Laser weld: microstructure and corrosion study of Ag–Pd–Au–Cu alloy of the dental application. Materials Letters, 2003, 57, 1888-1893.	1.3	23

#	Article	IF	CITATIONS
73	Dental Implants: Surface Modification of cp-Ti Using Plasma Spraying and the Deposition of Hydroxyapatite. Materials Science Forum, 2003, 416-418, 669-674.	0.3	12
74	Corrosion of Dental Amalgams: Studies of Individual Phases. Key Engineering Materials, 2002, 230-232, 463-466.	0.4	6
75	Aplicação de técnicas eletroquÃmicas no estudo da dissolução oxidativa da covelita (CuS) por Thiobacillus ferrooxidans. Quimica Nova, 2002, 25, 20-26.	0.3	5
76	Estudo do biomaterial Ti-6Al-4V empregando-se técnicas eletroquÃmicas e XPS. Quimica Nova, 2002, 25, 10-14.	0.3	35
77	Corrosion of dental amalgams: electrochemical study of Ag–Hg, Ag–Sn and Sn–Hg phases. Electrochimica Acta, 2001, 46, 3887-3893.	2.6	25
78	Resistência à corrosão das fases presentes em amálgamas dentários. Ecletica Quimica, 2001, 26, 125-142.	0.2	1
79	Corrosion behavior of a cobaltchromium-molybdenum alloy. Russian Journal of Electrochemistry, 2000, 36, 1117-1121.	0.3	21
80	Microstructure and corrosion resistance of inorganic–organic (ZrO2–PMMA) hybrid coating on stainless steel. Journal of Non-Crystalline Solids, 1999, 247, 164-170.	1.5	85
81	Microestrutura e resistência à corrosão do Ti c.p. soldado a laser utilizando em prótese sobre implantes. Ecletica Quimica, 1999, 24, 113-124.	0.2	4
82	A comparative study of the corrosion of high copper dental amalgams. Materials Letters, 1998, 36, 148-151.	1.3	22
83	A Study of the Microstructural Characteristics of Dental Amalgams. Materials Science Forum, 1998, 299-300, 298-299.	0.3	0
84	Caracterização e estudo da corrosão do amálgama dentário Dispersalloy por meio das técnicas de polarização potenciodinâmica e espectroscopia de impedância. Ecletica Quimica, 1997, 22, 101-119.	0.2	2