MarÃ-a Escudero Escribano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5474018/publications.pdf

Version: 2024-02-01

73 papers

4,614 citations

172207 29 h-index 65 g-index

77 all docs

77
docs citations

77 times ranked 5783 citing authors

#	Article	IF	Citations
1	Benchmarking Fuel Cell Electrocatalysts Using Gas Diffusion Electrodes: Inter-lab Comparison and Best Practices. ACS Energy Letters, 2022, 7, 816-826.	8.8	58
2	Toward understanding the role of the electric double layer structure and electrolyte effects on well-defined interfaces for electrocatalysis. Current Opinion in Electrochemistry, 2022, 32, 100918.	2.5	25
3	Recent progress and perspectives on single-atom catalysis. Journal of Materials Chemistry A, 2022, 10, 5670-5672.	5. 2	15
4	Surfactant-free syntheses and pair distribution function analysis of osmium nanoparticles. Beilstein Journal of Nanotechnology, 2022, 13, 230-235.	1.5	5
5	(Invited) Tailored Electrochemical Interfaces for the Production of Renewable Fuels. ECS Meeting Abstracts, 2022, MA2022-01, 1601-1601.	0.0	O
6	Reactivity with Water and Bulk Ruthenium Redox of Lithium Ruthenate in Basic Solutions. Advanced Functional Materials, 2021, 31, 2002249.	7.8	5
7	Self-supported Pt–CoO networks combining high specific activity with high surface area for oxygen reduction. Nature Materials, 2021, 20, 208-213.	13.3	139
8	pH and Anion Effects on Cu–Phosphate Interfaces for CO Electroreduction. ACS Catalysis, 2021, 11, 1128-1135.	5 . 5	22
9	Electrochemically Decorated Iridium Electrodes with WS _{3â^'} <i>_x</i> Toward Improved Oxygen Evolution Electrocatalyst Stability in Acidic Electrolytes. Advanced Sustainable Systems, 2021, 5, 2000284.	2.7	8
10	Strategies towardÂthe sustainable electrochemical oxidation of methane to methanol. Current Opinion in Green and Sustainable Chemistry, 2021, 30, 100489.	3.2	21
11	Preparation of high surface area Cuâ€Au bimetallic nanostructured materials by coâ€electrodeposition in a deep eutectic solvent. Electrochimica Acta, 2021, 398, 139309.	2.6	9
12	Surface characterization of copper electrocatalysts by lead underpotential deposition. Journal of Electroanalytical Chemistry, 2021, 896, 115446.	1.9	25
13	Energy Spotlight. ACS Energy Letters, 2021, 6, 4413-4415.	8.8	1
14	Self-supported nanostructured iridium-based networks as highly active electrocatalysts for oxygen evolution in acidic media. Journal of Materials Chemistry A, 2020, 8, 1066-1071.	5 . 2	43
15	Synthesis of Iridium Nanocatalysts for Water Oxidation in Acid: Effect of the Surfactant. ChemCatChem, 2020, 12, 1282-1287.	1.8	31
16	Addressing the Interfacial Properties for CO Electroreduction on Cu with Cyclic Voltammetry. ACS Energy Letters, 2020, 5, 130-135.	8.8	19
17	Recent advances in surface x-ray diffraction and the potential for determining structure-sensitivity relations in single-crystal electrocatalysis. Current Opinion in Electrochemistry, 2020, 23, 162-173.	2.5	18
18	X-ray Absorption Spectroscopy Investigation of Platinum–Gadolinium Thin Films with Different Stoichiometry for the Oxygen Reduction Reaction. Catalysts, 2020, 10, 978.	1.6	2

#	Article	IF	Citations
19	Tailored electrocatalysts by controlled electrochemical deposition and surface nanostructuring. Chemical Communications, 2020, 56, 13261-13272.	2.2	19
20	Elucidating the Structure of the Cu-Alkaline Electrochemical Interface with the Laser-Induced Temperature Jump Method. Journal of Physical Chemistry C, 2020, 124, 23253-23259.	1.5	24
21	Realistic Cyclic Voltammograms from <i>Ab Initio</i> Simulations in Alkaline and Acidic Electrolytes. Journal of Physical Chemistry C, 2020, 124, 20055-20065.	1.5	18
22	Toward Overcoming the Challenges in the Comparison of Different Pd Nanocatalysts: Case Study of the Ethanol Oxidation Reaction. Inorganics, 2020, 8, 59.	1.2	8
23	Women Scientists at the Forefront of Energy Research: A Virtual Issue, Part 2. ACS Energy Letters, 2020, 5, 623-633.	8.8	2
24	Insights in the Oxygen Reduction Reaction: From Metallic Electrocatalysts to Diporphyrins. ACS Catalysis, 2020, 10, 5979-5989.	5.5	52
25	Electrolyte Effects on Single Crystal Cyclic Voltammograms. ECS Meeting Abstracts, 2020, MA2020-02, 3046-3046.	0.0	0
26	Ab Initio Cyclic Voltammetry on $Cu(111)$, $Cu(100)$ and $Cu(110)$ in Acidic, Neutral and Alkaline Solutions. ChemPhysChem, 2019, 20, 3096-3105.	1.0	48
27	Electrolyte Effects on the Electrocatalytic Performance of Iridiumâ€Based Nanoparticles for Oxygen Evolution in Rotating Disc Electrodes. ChemPhysChem, 2019, 20, 2956-2963.	1.0	44
28	Structureâ€Sensitivity and Electrolyte Effects in CO ₂ Electroreduction: From Model Studies to Applications. ChemCatChem, 2019, 11, 3626-3645.	1.8	61
29	Electrochemical Synthesis of High-Value Chemicals: Detection of Key Reaction Intermediates and Products Combining Gas Chromatography–Mass Spectrometry and ⟨i⟩in Situ⟨ i⟩ Infrared Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 12762-12772.	1.5	3
30	Sputtered Platinum Thin-films for Oxygen Reduction in Gas Diffusion Electrodes: A Model System for Studies under Realistic Reaction Conditions. Surfaces, 2019, 2, 336-348.	1.0	27
31	The Role of Electrocatalysis in a Sustainable Future: From Renewable Energy Conversion and Storage to Emerging Reactions. ChemPhysChem, 2019, 20, 2900-2903.	1.0	17
32	Catalyst design criteria and fundamental limitations in the electrochemical synthesis of dimethyl carbonate. Green Chemistry, 2019, 21, 6200-6209.	4.6	6
33	Electrochemically Generated Copper Carbonyl for Selective Dimethyl Carbonate Synthesis. ACS Catalysis, 2019, 9, 859-866.	5.5	15
34	PEMFC Catalyst Testing: From RDE to GDE Setup. ECS Meeting Abstracts, 2019, , .	0.0	0
35	Benchmarking high surface area electrocatalysts in a gas diffusion electrode: measurement of oxygen reduction activities under realistic conditions. Energy and Environmental Science, 2018, 11, 988-994.	15.6	147
36	Frontispiece: Elucidation of the Oxygen Reduction Volcano in Alkaline Media using a Copper–Platinum(111) Alloy. Angewandte Chemie - International Edition, 2018, 57, .	7.2	1

#	Article	IF	Citations
37	Elucidation of the Oxygen Reduction Volcano in Alkaline Media using a Copper–Platinum(111) Alloy. Angewandte Chemie - International Edition, 2018, 57, 2800-2805.	7.2	72
38	Elucidation of the Oxygen Reduction Volcano in Alkaline Media using a Copper–Platinum(111) Alloy. Angewandte Chemie, 2018, 130, 2850-2855.	1.6	10
39	Frontispiz: Elucidation of the Oxygen Reduction Volcano in Alkaline Media using a Copper–Platinum(111) Alloy. Angewandte Chemie, 2018, 130, .	1.6	O
40	Importance of Surface IrO _{<i>x</i>} in Stabilizing RuO ₂ for Oxygen Evolution. Journal of Physical Chemistry B, 2018, 122, 947-955.	1.2	95
41	Frontispiece: Active-Phase Formation and Stability of $Gd/Pt(111)$ Electrocatalysts for Oxygen Reduction: An In Situ Grazing Incidence X-Ray Diffraction Study. Chemistry - A European Journal, 2018, 24, .	1.7	0
42	Activeâ€Phase Formation and Stability of Gd/Pt(111) Electrocatalysts for Oxygen Reduction: An In Situ Grazing Incidence Xâ€Ray Diffraction Study. Chemistry - A European Journal, 2018, 24, 12280-12290.	1.7	17
43	Copper Silver Thin Films with Metastable Miscibility for Oxygen Reduction Electrocatalysis in Alkaline Electrolytes. ACS Applied Energy Materials, 2018, 1, 1990-1999.	2.5	40
44	Recent advances in bimetallic electrocatalysts for oxygen reduction: design principles, structure-function relations and active phase elucidation. Current Opinion in Electrochemistry, 2018, 8, 135-146.	2.5	60
45	<i>Operando</i> XAS Study of the Surface Oxidation State on a Monolayer IrO _{<i>x</i>} on RuO _{<i>x</i>} and Ru Oxide Based Nanoparticles for Oxygen Evolution in Acidic Media. Journal of Physical Chemistry B, 2018, 122, 878-887.	1.2	59
46	Studies of the Oxygen Reduction Reaction of Pt Single Crystals Alloys in Alkaline Media. ECS Meeting Abstracts, 2018, , .	0.0	0
47	(Energy Technology Division Supramaniam Srinivasan Young Investigator Award Address) Enhanced Oxygen Electrocatalysis By Means of Electronic and Geometric Effects. ECS Meeting Abstracts, 2018, , .	0.0	0
48	New Platinum Alloy Catalysts for Oxygen Electroreduction Based on Alkaline Earth Metals. Electrocatalysis, 2017, 8, 594-604.	1.5	23
49	High Specific and Mass Activity for the Oxygen Reduction Reaction for Thin Film Catalysts of Sputtered Pt ₃ Y. Advanced Materials Interfaces, 2017, 4, 1700311.	1.9	39
50	Core–Shell Au@Metal-Oxide Nanoparticle Electrocatalysts for Enhanced Oxygen Evolution. Nano Letters, 2017, 17, 6040-6046.	4.5	135
51	Fuel Cells: High Specific and Mass Activity for the Oxygen Reduction Reaction for Thin Film Catalysts of Sputtered Pt ₃ Y (Adv. Mater. Interfaces 13/2017). Advanced Materials Interfaces, 2017, 4, .	1.9	0
52	Benchmarking Pt and Pt-lanthanide sputtered thin films for oxygen electroreduction: fabrication and rotating disk electrode measurements. Electrochimica Acta, 2017, 247, 708-721.	2.6	39
53	Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science, 2016, 352, 73-76.	6.0	783
54	Probing the nanoscale structure of the catalytically active overlayer on Pt alloys with rare earths. Nano Energy, 2016, 29, 249-260.	8.2	49

#	Article	IF	CITATIONS
55	Metallization of cyanide-modified Pt(111) electrodes with copper. Journal of Solid State Electrochemistry, 2016, 20, 1087-1094.	1.2	6
56	Pt Gd alloy formation on $Pt(111)$: Preparation and structural characterization. Surface Science, 2016, 652, 114-122.	0.8	16
57	The enhanced activity of mass-selected Pt Gd nanoparticles for oxygen electroreduction. Journal of Catalysis, 2015, 328, 297-307.	3.1	83
58	Benchmarking Pt-based electrocatalysts for low temperature fuel cell reactions with the rotating disk electrode: oxygen reduction and hydrogen oxidation in the presence of CO (review article). Electrochimica Acta, 2015, 179, 647-657.	2.6	86
59	Towards the elucidation of the high oxygen electroreduction activity of $Pt < sub > x < sub > Y$: $surface science and electrochemical studies of Y/Pt(111). Physical Chemistry Chemical Physics, 2014, 16, 13718-13725.$	1.3	27
60	Enhanced activity and stability of Pt–La and Pt–Ce alloys for oxygen electroreduction: the elucidation of the active surface phase. Journal of Materials Chemistry A, 2014, 2, 4234.	5.2	105
61	Enabling direct H2O2 production through rational electrocatalyst design. Nature Materials, 2013, 12, 1137-1143.	13.3	1,031
62	Electrooxidation of formic acid on gold: An ATR-SEIRAS study of the role of adsorbed formate. Catalysis Today, 2013, 202, 79-86.	2.2	62
63	Electrochemical STM study of the adsorption of adenine on Au(111) electrodes. Electrochemistry Communications, 2013, 35, 61-64.	2.3	26
64	Pt ₅ Gd as a Highly Active and Stable Catalyst for Oxygen Electroreduction. Journal of the American Chemical Society, 2012, 134, 16476-16479.	6.6	234
65	Cyanide-modified Pt(111): Structure, stability and hydrogen adsorption. Electrochimica Acta, 2012, 82, 524-533.	2.6	20
66	Quantitative Study of Nonâ€Covalent Interactions at the Electrode–Electrolyte Interface Using Cyanideâ€Modified Pt(111) Electrodes. ChemPhysChem, 2011, 12, 2230-2234.	1.0	40
67	Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide. Nature Chemistry, 2010, 2, 880-885.	6.6	284
68	Surface Decoration at the Atomic Scale Using a Molecular Pattern: Copper Adsorption on Cyanide-Modified Pt(111) Electrodes. Journal of Physical Chemistry C, 2009, 113, 12340-12344.	1.5	7
69	Cyclic Voltammetry, FTIRS, and DEMS Study of the Electrooxidation of Carbon Monoxide, Formic Acid, and Methanol on Cyanide-Modified $Pt(111)$ Electrodes. Langmuir, 2009, 25, 6500-6507.	1.6	149
70	Electrochemical and FTIRS characterisation of NO adlayers on cyanide-modified $Pt(111)$ electrodes: the mechanism of nitric oxide electroreduction on Pt. Physical Chemistry Chemical Physics, 2008, 10, 3628.	1.3	50
71	Surface Sensitivity and Electrolyte Effects on Cu Single-crystalline Electrodes for CO Electroreduction. , 0, , .		0
72	Surface Sensitivity and Electrolyte Effects on Cu Single-crystalline Electrodes for CO Electroreduction. , 0, , .		0

ARTICLE IF CITATIONS
73 Electrocatalytic Synthesis of Dimethyl Carbonate., 0,,... 0